3D City Database for CityGML

Version 3.3.0

Documentation

2016

2 3D Geodatabase for CityGML 2016

The images on the cover page were provided by:

— Chair of Photogrammetry and Remote Sensing & Chair of Cartography, Technische
Universitidt Miinchen

— Geobasisdaten: © Stadtvermessung Frankfurt am Main
- IDAC Ltd, UK.
- virtualcitySYSTEMS GmbH, Berlin, Germany

— Chair of Geoinformatics, Technische Universitit Miinchen. Image created based on
master thesis work of Matthias Korner, jointly supervised with HTW Dresden

- 3D City Model of Berlin © Berlin partner GmbH

- M.O.S.S. Computer Grafik Systeme GmbH, Taufkirchen, Germany

3D Geodatabase for CityGML 2016 3

Active participants in development

Name Institution Email

Thomas H. Kolbe Chair of Geoinformatics, thomas.kolbe@tum.de

Zhihang Yao Technische Universitidt Miinchen zhihang.yao@tum.de

Claus Nagel virtualcitySYSTEMS GmbH, Berlin cnagel@pvirtualcitysystems.de
Richard Redweik rredweik@virtualcitysystems.de
Philipp Willkomm | M.O.S.S. Computer Grafik Systeme GmbH, pwillkomm@moss.de

Gyorgy Hudra Taufkirchen, Germany ghudra@moss.de

Arda Miiftioglu amueftueoglu@moss.de

Felix Kunde - felix-kunde@gmzx.de

Participants in earlier developments

3D City Database Version 3.3.0 and its tools are based on earlier versions. During the
development phase 2006-2012 at the Institute for Geodesy and Geoinformation Science, TU
Berlin, the following individuals contributed to the development:

Name Institution Email

Thomas H. Kolbe Institute for Geodesy and Geoinformation

Claus Nagel Science, Technische Universitéit Berlin

Javier Herreruela

Gerhard Konig gerhard.koenig@tu-berlin.de
Alexandra Lorenz alexandra.lorenz@tu-berlin.de
Babak Naderi babak.naderi@telekom.de
Felix Kunde Universitédt Potsdam

During the development phase 2004-2006 at the Institute for Cartography and Geo-
information, University of Bonn, the following individuals contributed to the development:

Name Institution Email

Thomas H. Kolbe Institute for Cartography and Geoinformation,

Lutz Pliimer University of Bonn
Gerhard Groger

Viktor Stroh

Jorg Schmittwilken

Andreas Poth lat/lon GmbH, Bonn

Ugo Taddei

3D Geodatabase for CityGML 2016

3D Geodatabase for CityGML 2016 5

Table of Contents

1557 0 |] 11
1 INTRODUCGTION..... ..o cerr e e e e s e s s s s s s s s e s s s s e s e s s e s e e s nnnnnnsnnees 13
1.1 Main features of 3DCItYDB............ccccoooiieiiiieeiieeeieie e e 15
1.2 System and desSign deCiSIONS.................ccceivveeeiieeiiicieeeie e e et 19
1.3 List of changes between SOftWare VErSiONS...............cccccuucueveiieeaeiieseeneaeneieenees 20
1.3.1 Notable changes between 3.3.0 and 3.0.0..........coooiiiiiiciiiiniieeeee 20

1.3.2 Notable changes between 3.0.0 and 2.1.0.........cccoooiieiieieeniieciieieeieee 21

1.4 DevelOpment RISTOTY............c...ooieiiiiiiieie ettt 22
2 DATA MODELLING AND DATABASE DESIGNcccooiii e 25
2.1 Simplification compared to CityGML 2.0.0c.ccoccveveeeioiaeeaeiieeieeiieeieeans 25
2.1.1 Multiplicities, cardinalities and reCUrSions..........cccceeevveeveereeerieeniieeneeneenns 25

2.1.2 Data type adaptationcceeecuierieiieeiierie et ee et 26

2.1.3 Project specific classes and class attributes..........ccceevvveveeriieniieniieenieneenns 26

2.1.4 Simplified design of GML geometry classesccceovveveerveerieenieeneennenns 26

2.2 UML class diQ@Eami.................ccccciiiuiiiiiiiiiiiieiie et e et 26
2.2.1 Geometric-topological Model...........cccooriiiiiiiiiiiiniieeeeeeee e 27

2.2.2 IMPUCIt GEOMEIIY....ceiiiiiiiiiiieiieeiie ettt ettt et ene et ebeesiteeseesaeeens 28

2.2.3 Appearance Model..........ooooiiiiiiiiiiii e 29

2.2.4 Thematic MOAEL......cccuiiiiiiiiiiiiiiieeeeet e e 32
2.2.4.1 Core MOdEl.....eoiiiiiiiiiiiieiieiieeees e 32

2.2.4.2 Building model.........cccceeiieiiiiiiieiiieeeee e 34

2.2.4.3 Bridge Model......c.oooiiiiiiiiiiicieee e 38

2.2.4.4 CityFurniture Model..........ccccovveeiiiiiiniiececccecee e 41

2.2.4.5 Digital Terrain Model...........ccoevviiiiiniiiieieecceeee e 42

2.2.4.6 Generic Objects and Atributescccceevvereericmienienieneenirennns 43

2.2.47 LandUse Modelcoooviiiiiiiiiiiiiiieeiee e 45

2.2.4.8 Transportation Model..........ccceecuiriiiiieiieniieiieeeeeie e 45

2.2.4.9 Tunnel Modelccooiiiiiiiniiniiiiiieieecesee e 47

2.2.4.10 Vegetation Model........c.cocuieruieiiieniiiieiieeie e 51

2.2.4.11 WaterBodies Model...........cocueviiiiniienieiiiieseiieseee e 52

2.3 Relational database SChema.....................cccccueioiiiiiiiiiiiiiiieeese e 54
2.3.1 Mapping rules, schema CONVENTIONS.........cccuieeerrierieeriieneenieeiee e eree e 54
2.3.1.1 Mapping of classes onto tables..........cccceeveueeriinieriienieiiieees 54

2.3.1.2 Explicit declaration of class affiliation..........cccccevververiininennens 54

2.3.2 Database SChema.......ccccueiiiiiiiiiiiiieeiccee e 57
2.3.2.1 Core MOdEl..c...eiiiiiieiieiieieeetee e 57

2.3.2.2 Tables for geometry representationccceeeeeeeveeenieeesvesineeenns 60

3D Geodatabase for CityGML 2016

2.3.2.3 Appearance Modelccoocieiiiiiiiiiiiieeee e 66

2.3.2.4 Building Model.........coooiiiiiiiiiieee e 70

2.3.2.5 Bridge Model......c.coouiiiiiiiieiieieeeee e 76

2.3.2.6 CityFurniture Model..........cccoeviiiiiiieiienieeieeeece e 78

2.3.2.7 Digital Terrain Model..........cccooevieriiieiieniieieeeeeie e 79

2.3.2.8 Generic Objects and Attributescceeveveerieneeniieenieeieerieeeens 81

2.3.2.9 LandUse Modelcoouiiiiiiiiiiiiiiiececeeeeeee e 83

2.3.2.10 Transportation Model...........cceeeviiiiiiiiiieieccceeee e 83

2.3.2.11 Tunnel Modelccooiiiiiiiiieieeie et 85

2.3.2.12 Vegetation Modelcocueeiiieiiiiniiiieiieeie e 87

2.3.2.13 WaterBody Modelccoevieriiiiiieieeeeeeee e 88

2.3.3 SEQUEIICES ..uvtieeiiiieiiiiie ettt ettt et et e et e st e e ateesnteesaeeenens 89

2.3.4 Definition of the CRS for a 3D City Database instance..............cccccueuneenne 90
IMPLEMENTATION AND INSTALLATION.......cooiiiii srre e e e e e e 93
3.1 SYSIEM FOQUITEMENES.......cc..coeiiiiiiie ettt 93
3.1.1 3D City Database......cccceeouieeieeiieiieeieeiee ettt ettt 93

3.1.2 Importer/EXporter TOOL.......ccoeviiiiiiiiieiieeiiieeie et 93

3.2 Installation of the Importer/Exporter and the 3D City Database SQL Scripts 94
3.3 Setting up the database SCHEMA.................c...ccccueeeceiiiiiiiieeiie e 96
3301 OTACLE . 97

3.3.2 POStEIeSQLi..coeiiiiiieeee e 100

3.4 Migration from version 2.1 to version 3.3 of the 3D City Database................... 104
341 OTACLE. .. 104

342 POSEEIESQL. . e e e 106

3.4.3 Dropping the old v2.x schema (Oracle and PostgreSQL) 107

3.5 Upgrade from version 3.x to version 3.3 of the 3D City Database..................... 108
3.5.1 OTACLE .. 109

3.5.2 POStEIESQL. ..ottt et e e 109
STORED PROCEDURES AND ADDITIONAL FEATURES..........cccccccciinunnn. 111
4.1 CITYDB UTIL.........ocoooiiaieeeeeeeee et 112
4.2 CITYDB IDX......coceiiiiiieee ettt et 112
4.3 CITYDB SRS.....ooi oottt et 113
4.4 CITYDB STAT ..ot et 113
4.5 CITYDB DELETE and CITYDB _DELETE BY LINEAGE............cccccceevnr... 113
4.6 CITYDB ENVELOPEcccooiiieiieeeee et 115
IMPORTER / EXPORTER.......ce i s 117
5.1 Running and using the Importer / EXpOFterccccoovivoiniieriniiiniicenieiane 117

5.2 Database connections and OPerationsccccccoueeeeceesoeeieesieanieaeesiaeens 120

3D Geodatabase for CityGML 2016 7

5.3
54
5.5

5.6

5.7
5.8

5.2.1 Managing and establishing database connectionsc..ccccceerveeruennnnne 120
5.2.2 Executing database Operations...........ceecueerieeiieriienieeniiesineieeneeseeeieeeeens 122
Importing CityGML filescc.cccooviiiiiiiiieiieee e 126
Exporting t0 CityGML...............ccoouiiiiiiiii et 131
Exporting to KML/COLLADA/GITEcc.ccccooiiiiiiiiiiiiiaiieee e 134
5.5.1 Support of GenericCityObject having any geometry types..........cceeu..... 141
5.5.2 Loading exported models in Google Earth and Cesium Virtual Globe... 142
Preferences 145
5.6.1 CityGML import Preferencesoovveerieenieiierieeieeniieeieereeseesveesieeneeens 146
5.6.1.1 CONtINUALION ...euvieieiiiieieeiie sttt st et ere s 146
5.6.1.2 gml:idhandling.......ccccoomiiiiiiiniiiiiiiieiiece e 147
5.6.1.3 Bounding boXcc.ceecuviiiiieiiiieeiiie ettt 148
5.6.1.4 AdAIesS....eieeeiieiiieie e 148
5.6.1.5 APPEATANCEeovuiiiiiiiiiiiieeiiee ettt ettt 151
5.6.1.6 GROMEIIY .ottt ettt et et e st e s s 151
5.6.1.7 TNACXES...ccvieiiieiieiieieeete e 153
5.6.1.8 XML validationcccceruerrierieniieiiesieieee e 154
5.6.1.9 IMPOTt 1O ..ceieiiiiiiiiieiieiieeie ettt e 155
5.6.1.10 RESOUICES....uueiiiiiiiiiiieeiieeeeeeee et 157
5.6.2 CityGML eXport PreferenCes......ueeiiiereiiieeiiiieeeieeeeieeeneeesreeesvee e e 159
5.6.2.1 CityGML VEISION ...cveiuieiiriiiniieiieiiienieeieeesieeee et 159
5.6.2.2 Bounding bBoXcocceeiiiiiiiiiiiieiieee e 159
5.6.2.3 CityODbJECtGIOUDooveruveiiriieniieieeiitenieeie et 161
5.6.2.4 AdAIESS ..covieiiiiiiiiieieeeie e 162
5.6.2.5 APPEATANCEeeevuuiieeiiiieiiieeiieeetee e e etee et e e e et e s s 163
5.6.2.6 XLINKS c..eetieiiieiieiiesieeieie ettt ene e 164
5.6.2.77 RESOUICES. ..ceiuuiiriiiiiiiiiiiiieeiieeee ettt 165
5.6.3 KML/COLLADA/gITF export preferences.......c.coeeeveeeveeerveeenveesseeennne 166
5.6.3.1 General Preferences.........ccovveiieiiiiieniiiiieicceeeeee e 166
5.6.3.2 Rendering Preferences..........cocceeviiiiniieiieniiieeeiee e, 170
5.6.3.3 Information Balloon Preferences...........cccccoeueiuieiinniinneenennen. 178
5.6.3.4 Altitude/Terrain Preferencescccoeevevienimeeneenenieneneenne. 185
5.6.3.5 General setting recommendationsceccueeveeriienreereeneennen. 190
5.6.4 Management of user-defined coordinate reference systems.................... 192
5.6.5 General PreferenCesocouieeiieiieeiieiie et ettt e ebeeaeeaeens 194
5.6.5.1 CACKC ..cvieiieiiieeeeee e e 194
5.6.5.2 Import and export pathcccoeevveeiiieiieeniie e 195
5.6.5.3 NEtWOTK PrOXIES ...ccveerueiiiieiieeiieniiiieesieeeiee st eee ettt eeee e 195
5.6.5.4 LOZZING ...oiiiiiiiiiieie ettt et 197
5.6.5.5 Language SeleCtioncceeieeiieriiiieniieiieeieeee et 198
Map window for bounding box Selections.................ccccouvcuevciieeeicieniiiiieiene 199

Using the command line interface (CLI)...............cccccooooeiviiiiiiniaiiieiieee e, 202

8 3D Geodatabase for CityGML 2016
6 IMPORTER / EXPORTER PLUGINS.........cco it s n s 205
6.1 Introduction to the plugin architeCtureccccoevvevveeniieiieiiieiieeeeeiene 205

6.2 Spreadsheet Generator Plugin (SPSHG)cccccccooaioieiiiiiieiiieeiieiieeeeeene 207

0.2.1 DEIINITION ...ttt ettt st e 207

6.2.2 Plugin installationccceeeeiiieiiiieeiie e 207

6.2.3 USer INteTTaceccueiieiiiiiieie e 208

6.2.3.1 Main Parameters..........ccccveeeeieeeiiieiee et 208

0.2.3.2 COIUMNS. ..ottt ettt s ere e 209

6.2.3.3 CONteNnt SOUICEceovveruririeiiieeieeiiite ettt 214

0.2.3.4 OUIPUL.c..eeiiiiiieieeiiee ettt sttt ebe e 214

7 WEB FEATURE SERVICE s nrn s s 221
7.0 SYSIEM FEQUITEMENLSoeeeeeeiiieeeie et e e e 221

7.2 IRSEQIIATION. ...t e 222

7.3 Configuring the Web Feature ServiCe...........ccccccooviiemiieeniiiasiaeiiieeiieeeeieenens 223

7.3.1 Database SELHNEScccueeevieriieiiieiierieeteeniee it eieeeteeseee e eebeenaeesereeseeneeens 224

7.3.2 Capabilities SETNZScecuiereieeiieiieriieeieeiie e eiee ettt e e ete e seeeeaeeneeens 227

7.3.3 Feature type SETHNESeeeeuiereieeiieiieriieeieeriie e eiee e et s ereesaeeseaeeaeeneeens 228

7.3.4 Operations SEUNGEScccveerrureerieeeiiieeeiieentireeesreeesreeeneeessseeensseesnseennnes 229

7.3.5 SETVEL SELUNES....ceeevierieeiieeiiieeeieeeiteeetreestiteeesbeeesebeeeneeessseeensseesseennnes 230

7.3.6 CaChe SELHINGSeeieuvieiieeiiieeiie et eeiee e etee et cree st e e eeneeessbeeesseeeaeennnes 231

7.3.7 SECUITLY SELHNES...cuvierieeirresitreeeieeeieeeeteeestireeesbeeesseeeneeessseeensseeenseensnes 232

7.3.8 LOZEING SELUNES ...eeeeeiiiiiieiieeieeieeiie ettt ettt et e sttt seteeaeeaeeens 232

7.4 Using the Web Feature Service................cccccuueviivioiriieniiiinieiiiienieeseeneees 233

7.4.1 Basic functionality.........ccceeeiiiiieiiieiiieiierie et 233

7.4.1.1 WEFS OPErationscccceevvieeriieeiiieieeeeieeeeiee e eree e e eeveenee s 233

7.4.1.2 Service URLccoooiiiieieiieeceeee et 234

7.4.1.3 Service DINAINGScoveeieriiriiniiieeiceeeeeeeee e 234

7.4.1.4 CityGML feature types.......ccceeevueeiierienenieniemreneenieeeeseeeveenes 235

7.4.1.5 EXCEPHION TEPOITS.....eeerieiieiieeiieriiiiteeiieeieeereeneeeeesereeeeesaeeneeas 236

7.4.2 GetCapabilitieS OPETationcccierieeriieniieiieniieeieeriee e ereesieeeeeeesieeneeens 236

7.4.3 DescribeFeatureType Operation............cceeeeeiieriieeiieeniiesieeieenie e esieeeens 237

7.4.4 ListStoredQUeries OPeration........c..cccveerveeriieiierrieeireesieeeiaereeseesseesseeseens 238

7.4.5 DescribeStoredQUEery OPErationcceeeveiverueeesieeseeeieereeseesreesseeseens 238

7.4.6 GetFeature OPETationcccuveeeieeeiiieeeieeeeeireeeereeeeieeeneeesebeessreeeeeenans 240

7.5 Web-based WIS CLIENL.............ccc.cccveeiiiieiiiesiee et 242

8 3DCITYDB-WEB-MAP-CLIENTo e 245
8.1 SYSIEN FEGUITEMENESoee ettt s 246

8.2 Installation and cONfIGUIALION.................ccooccuiiiiiiiiiieieee e 246

8.3 Using the 3D Web ClIENTccccouiiiiiiiiiiiiieeie et 248

8.3.1 Overview of the relevant features and functionaliti€s...........ceeveeeeeveeen.... 248

3D Geodatabase for CityGML 2016 9

8.3.2 Handling KML/gITF models with online spreadsheetccc..... 253

8.3.3 Handling Web Map Service data.........ccccecevirienienieniiinicienecnenicneeenee 260

8.3.4 Handling Digital Terrain Modelscccceerieiieniiiniinieeieeeeie 262

8.3.5 Interaction with 3D ODJECES.....ceeiuiieiiiiieiieieciiee e 264

9 REFERENCES.........c s s s 271
APPENDIX A CHANGELOG........cooimeeeeeemeeemrrrrrrrrrnrrnssnss s s s s ss s s s ssssssssssssssnsnnnes 275
A.1 3D City Database relational SChemaccccocceiiiaiiiniciiiiiiiiiee 275
A.L.1 General Chan@es........c.cccuieeuiieiiienienie et eree e 275

A.1.2 IMPLICT GEOMETRY & SURFACE GEOMETRYcc.cccvevvrenennne. 275

A.1.3 BUILDING INSTALLATION & OPENINGccccovimiiiieiieiereeeenee. 276

A.1.4 New tables for new thematic modules BRIDGE & TUNNEL................ 276

ALLS CITYOBIECT ..ottt sttt 276

A.1.6 SOLITARY VEGETAT OBJECT ...cccieoiiiiieieeeeeeeeeeee e 276

A.1.7 RASTER RELIEF, GRID COVERAGE & ORTHOPHOTO............... 276

A.1.8 SURFACE DATA & TEX IMAGE & TEXTUREPARAM................. 276

A.2 3D City DAtabase SCTIDLScccoeeueeiiiiiieiieeie et 277

A.3 3D City Database stored proceduresccccouveiciaicieeiasieaiieeieeeienns 277
A.3.1 General Changes...........viviiiieiiieeiieeeiee ettt eaeeeree e 277

A.3.2 UTIL PACKAZEvvieeeeiiieeiieeeiee ettt ettt et e e e e esnaeeevee e 277

A3.3 IDX PACKAZE ..eieueieiieieeieee et 278

A.3.4 SRS PACKAZEeouviiiieeiiiiieiece s 278

A.3.5 STAT PACKAZEveeiieieeiiieieeeeeee ettt eree e 278

A.3.6 DELETE PaCKageceeeouiieiiieiieiieciieeieeeite ettt 278

A.3.7 DELETE BY LINEAGE package......ccccccccovuiiniiniieiimiienieeieeieeeeene 278

A.3.8 ENVELOPE packagecccceeviiiiiiiiiieeieecececee et 278

A.4 3D City Database Importer/EXPOTLer...............cc.cccouieeeeecueeiieeieaieesieeeieeenieeanens 279
A4 1 General Changes..........ccoieviiiiiiiiiieiee e 279

A4.2 CityGML IMPOTt...cuiiiiiiieiieeieeeiiesie ettt eeee et e et e seeebeeseseereeeens 279

A 4.3 CityGML @XPOTt ..coiieiiiiieiieeiieeieesie ettt siee et e saeebeessseeseeenns 279

A.44 KML/COLLADA/GITFE €XPOIt....ccccuieiiiiiiieieiieeireeeieeeieareeeieereeseveereeeens 280

A5 Web Feature SErViCeccccuuiuiiiiiiiiiiiaiiieie ettt 280

A6 3D Web MaAP CLIENL ...t 280
APPENDIXB 3DCITYDB @ TU MUNCHEN.........c.ccecmeeeeereeeerae e rnenesaesnenaenees 281
B.1 Interactive Cloud-based 3D Webclientccccccoceivoiiiiiiniciiiiiiiiieieeee, 281

B.2 Research Projects in which 3DCityDB is being usedccccccovvevcveeennenne. 282

B.3 Current and future work on 3DCItYDB............cccccccieiieeiiieiiieeeieeeiee e 282
APPENDIXC 3DCITYDB @ VIRTUALCITYSYSTEMS.........cccooi s 283
C.1 vIirtualcityDATABASEcooiiiiiiiiiiiiiieieeeeet et 283

C.2 virtualcitySUITE — The 3D City Platform.............ccccoceevevveiviiieenieeiiieeciieeeneenne, 284

10 3D Geodatabase for CityGML 2016
APPENDIX D 3DCITYDB @ M.O.S.S. ...t s s 285
D.1 novaFACTORY at @ ZIANCEc.cccoeoiiciiiiiiiiiiiieieeeee e 285

D.2 NOVAFACTORY 3D GDI ...t 286

3D Geodatabase for CityGML 2016 11

Disclaimer

The 3D City Database version 3.3.0 developed in collaboration of the Chair of
Geoinformatics, Technische Universitit Miinchen (TUMG]I), virtualcitySYSTEMS GmbH, and
M.O.S.S. Computer Grafik System GmbH is free software and licensed under the Apache
License, Version 2.0. See the file LICENSE file shipped together with the software for more
details. You may obtain a copy of the license at http://www.apache.org/licenses/LICENSE-
2.0.

Please note that releases of the software before version 3.3.0 continue to be licensed under
GNU LGPL 3.0. To request a previous release of the 3D City Database under Apache License
2.0 create a GitHub issue at https://github.com/3dcitydb.

THE SOFTWARE IS PROVIDED BY TUMGI "AS IS" AND "WITH ALL FAULTS."
TUMGI MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND
CONCERNING THE QUALITY, SAFETY OR SUITABILITY OF THE SOFTWARE,
EITHER EXPRESSED OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT.

TUMGI MAKES NO REPRESENTATIONS OR WARRANTIES AS TO THE TRUTH,
ACCURACY OR COMPLETENESS OF ANY STATEMENTS, INFORMATION OR
MATERIALS CONCERNING THE SOFTWARE THAT IS CONTAINED ON AND
WITHIN ANY OF THE WEBSITES OWNED AND OPERATED BY TUMGI.

IN NO EVENT WILL TUMGI BE LIABLE FOR ANY INDIRECT, PUNITIVE, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES HOWEVER THEY MAY ARISE AND
EVEN IF TUMGI HAVE BEEN PREVIOUSLY ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

12

3D Geodatabase for CityGML 2016

3D Geodatabase for CityGML 2016 13

1 Introduction

Virtual 3D city and landscape models are provided for an increasing number of cities, regions,
states, and even countries. They are created and maintained by public authorities like national
and state mapping agencies as well as by cadastre institutions and private companies. The 3D
topography of urban and rural areas is essential for both visual exploration and a range of
different analyses in, for example, the urban planning, environmental, energy, transportation,
and facility management sectors.

3D city models are nowadays used as an integrative information backbone representing the
relevant urban entities along with their spatial, semantic, and visual properties. They are often
created and maintained with full coverage of entire cities, i.e. all real world objects of a
specific type like buildings, roads, trees, water bodies, and the terrain are explicitly
represented. In most cases the 3D city model objects have well-defined identifiers, which are
kept stable during the lifetime of the real world objects and their virtual counterparts. Such
complete 3D models are a good basis to organize different types of data and sensors within
Smart City projects as they build a stable platform for information linking and enrichment.

In order to establish a common understanding and interpretation of the urban objects and to
achieve interoperable access and exchange of complete 3D models including the geometrical,
topological, visual, and semantic data, the Open Geospatial Consortium (OGC) has issued the
CityGML standard [Kolbe 2009]. CityGML defines a feature catalogue and data model for
the most relevant 3D topographic elements like buildings, bridges, tunnels, roads, railways,
vegetation, water bodies, etc. The data model is mapped to an XML-based exchange format
using OGC’s Geography Markup Language (GML).

The 3D City Database (3DCityDB) is a free Open Source package consisting of a database
schema and a set of software tools to import, manage, analyse, visualize, and export virtual
3D city models according to the CityGML standard. The database schema results from a
mapping of the object oriented data model of CityGML 2.0 to the relational structure of a
spatially-enhanced relational database management system (SRDBMS). The 3DCityDB
supports the commercial SRDBMS Oracle (with ‘Spatial’ or ‘Locator’ license options) and
the Open Source SRDBMS PostGIS (which is an extension to the free RDBMS PostgreSQL).
3DCityDB makes use of the specific representation and processing capabilities of the
SRDBMS regarding the spatial data elements. It can handle also very large models in multiple
levels of details consisting of millions of 3D objects with hundreds of millions of geometries
and texture images.

3DCityDB is in use in real life production systems in many places around the world and is
also being used in a number of research projects. For example, the cities of Berlin, Potsdam,
Munich, Frankfurt, Zurich all keep and manage their virtual 3D city models within an
instance of 3DCityDB. The companies virtualcitySYSTEMS and M.O.S.S., who are also
partners in development, use 3DCityDB at the core of their commercial products and services
to create, maintain, visualize, transform, and export virtual 3D city models (see Appendix B,
Appendix C, and Appendix D for examples how and where TUM, virtualcitySYSTEMS, and

14 3D Geodatabase for CityGML 2016

M.O.S.S. employ 3DCityDB in their projects). Furthermore, the state mapping agencies of all
16 states in Germany store and manage the state-wide collected 3D building models in
CityGML LODI1 and LOD2 using 3DCityDB. In 2012 the previous version of 3DCityDB and
the developer team received the Oracle Spatial Excellence Award, issued by Oracle USA.

Since 3DCityDB is based on CityGML, interoperable data access from user applications to
the database can be achieved in at least two ways:

1) by using the included high-performance CityGML Import/Export tool or the included
basic Web Feature Service 2.0 in order to exchange the data in CityGML format
(Version 2.0 or 1.0), and

2) by directly accessing the database tables whose relational structures are fully
explained in detail within this document. It is easy to enrich a 3D city model by
adding information to the database tables in some user application (using e.g. the
database APIs of programming language like C++, Java, Python, or of ETL tools like
the Feature Manipulation Engine from Safe Software). The enriched dataset then can
be exchanged or archived by exporting the city model to CityGML without
information loss. Analogously, 3DCityDB can be used to import a CityGML dataset
and then access and work with the city model by directly accessing the database tables
from some application programs or ETL software.

The Import/Export tool also provides functionalities for the direct export of 3D visualization
models in KML, COLLADA, and gITF formats. A tiling strategy is supported which allows
to visualize even very large 3D city and landscape models in geoinformation systems (GIS) or
digital virtual globes like Google Earth or Cesium Virtual Globe. The Import/Export tool
comes with an API to create further importers, exporters, and database administration tools.
One export plugin coming with the software installer package is the so-called ‘Spreadsheet
Generator Plugin’ (SPSHG) which allows to export thematic data of 3D objects into tables in
CSV and Microsoft Excel format that can be easily uploaded to and published as online
spreadsheets, for instance, within the Google Cloud. Starting from release 3.3.0, the
3DCityDB software package comes with a new Cesium-based 3D viewer so-called
“3DCityDB-Web-Map-Client” which links the 3D visualization models with online
spreadsheets and facilitate interactive visualization and exploration of 3D city models over the
Internet within a web browser.

This document describes the design and the components of the 3D City Database as well as
their usage for the new major release 3.3.0 which has been developed and implemented by the
three partners in development, namely the Chair of Geoinformatics at Technische Universitdt
Miinchen, virtualcitySYSTEMS, and M.O.S.S. The development is continuing the previous
work carried out at the Institute for Geodesy und Geoinformation Science (IGG) of the Berlin
University of Technology and the Institute for Cartography and Geoinformation (IKG) of the
University of Bonn.

This document has been completely reworked, integrated, extended, and edited from the
previous 3DCityDB documentations (version 3.0.0, version 2.0.1, and the documentation
addendum on 3DCityDB version 2.1.0 and the Importer/Exporter tool version 1.6.0). Some

3D Geodatabase for CityGML 2016 15

figures and texts are cited from the OpenGIS City Geography Markup Language (CityGML)
Encoding Standard, Version 2.0.0 [Groger et al. 2012].

1.1 Main features of 3DCityDB

Many (but not all) of the features referring to object modelling and representation are implied
by following the CityGML standard 2.0.0 issued by the Open Geospatial Consortium.

CityGML 2.0.0 and 1.0.0 compliant database: The implementation defines the
classes and relations for the most relevant topographic objects in cities and regional
models with respect to their geometrical, topological, semantical, and appearance
properties. Included are generalization hierarchies between thematic classes,
aggregations, relations between objects, and spatial properties. These thematic
information go beyond graphic exchange formats and allow to employ virtual 3D city
models for sophisticated analysis tasks in different application domains.

Implementation on the basis of a spatially-enhanced relational database manage-
ment system (Oracle 10G R2 or higher with Spatial/Locator option; PostgreSQL
9.1 or higher with PostGIS extension 2.0 or higher): For the representation of all
vector and grid geometry the built-in data types provided by the SRDBMS are used
exclusively. This way, special solutions are avoided and different geoinformation
systems, CAD/BIM systems, and ETL software systems can directly access (read and
write) the geometry objects stored in the SRDBMS.

Tool for importing and exporting CityGML data: The included Importer/Exporter
software tool allows for high performance importing and exporting of CityGML
datasets according to CityGML versions 2.0 and 1.0. The tool allows processing of
very large datasets (>> 4 GB), even if they include XLinks between CityGML features
or XLinks to 3D GML geometry objects. The multi-threaded programming exploits
multiprocessor systems or multikernel CPUs to speed up the processing of complex
XML-structures, resulting in high performance database access. Objects can be
filtered during import or export according to spatial regions (bounding box) and their
object IDs, feature types, and names. Bounding boxes can be interactively selected
using a map window based on OpenStreetMap (OSM). A tiling strategy is
implemented in order to support the export of very large datasets. In case of a high
number of texture images they can be automatically distributed in a configurable
number of subdirectories in order to avoid large directories with millions of files
which can render a Windows operating systems unresponsive. The Importer can also
validate CityGML files and can be configured to only import valid features. The
Importer/ Exporter tool can be run in interactive or batch mode.

Tool for exporting visualization models in KML, COLLADA, and gITF formats:
This tool exports city models from the 3D city database in KML, COLLADA, and
glTF formats which can directly be viewed and interactively explored in
geoinformation systems (GIS) or digital virtual globes like Google Earth or Cesium

16

3D Geodatabase for CityGML 2016

WebGL Virtual Globe. A tiling strategy is supported where only tiles in the vicinity of
the viewer’s location are being loaded facilitating the visualization of even very large
3D city and landscape models. Information balloons for all objects can be configured
by the user.

Tool for exporting data to spreadsheets: The ‘Spreadsheet Generator’ (SPSHQG)
allows exporting thematic data of 3D objects into tables in CSV and Microsoft Excel
format which can be uploaded to a Google Spreadsheet within the Google Document
Cloud. For every selected geoobject one row is being exported where the first column
always contains the GMLID value of the respective object. The further columns can
be selected by the user. This tool can be used to export attribute data from e.g.
buildings like the class, function, usage, roof type, address, and further generic
attributes that may contain information like the building energy demand, potential
solar energy gain, noise level on the facades etc. The spreadsheet rows can be linked
to the visualization model generated by the KML/COLLADA/gITF Exporter. This is
shown in Appendix B.

Tool for 3D visualization and interactive exploration of 3D models on the web:
The ‘3DCityDB-Web-Map-Client’ is a WebGL-based 3D web viewer which extends
the Cesium Virtual Globe to support efficient displaying, caching, prefetching,
dynamic loading and unloading of arbitrarily large pre-styled 3D visualization models
in the form of tiled KML/gITF datasets generated by the KML/COLLADA/gITF
Exporter. It provides an intuitive user interface to facilitate rich interaction with 3D
visualization models by means of the enhanced functionalities like highlighting the
objects of interests on mouseover and mouseclick as well as hiding, showing, and
shadowing them. Moreover, the 3DCityDB-Web-Map-Client is able to link the 3D
visualization model with an online spreadsheet (Google Fusion Table) in the Google
Cloud and allows viewing and querying the thematic data of every city object
according to its GMLID.

Web Feature Service (WFS) 2.0: The 3DCityDB comes with an OGC compliant
implementation of a basic WFS 2.0 allowing web-based access to the 3D city objects
stored in the database. WFS clients can directly connect to this interface and retrieve
3D content for a wide variety of purposes. The implementation currently satisfies the
Simple WFS conformance class. An implementation of a full, transactional WES is
commercially available from one of the development partners, see Appendix C.

Support of different kinds of multi-representations: Levels of detail, different
appearances, (and with Oracle RDBMS only) planning versions and history:
Every geoobject as well as the DTM can be represented in five different resolution or
fidelity steps (Levels of Detail, LOD). With increasing LOD, objects do not only
obtain a more precise and finer geometry, but do also gain a thematic refinement.

Different appearance data may be stored for each city object. Appearance relates to
any surface-based theme, e.g. infrared radiation or noise pollution, not just visual

3D Geodatabase for CityGML 2016 17

properties. Consequently, data provided by appearances can be used as input for both
presentation and analysis of virtual 3D city models. The database supports feature
appearances for an arbitrary number of themes per city model. Each LOD of a feature
can have individual appearances. Appearances can represent — among others — textures
and georeferenced textures. All texture images can be stored in the database.

The version and history management employs Oracle’s Workspace Manager and,
hence, is only available for 3DCityDB instances running on an Oracle RDBMS. It is
largely transparent to application programs that work with the database. Procedures
saved within the database (Stored Procedures) are provided, which allow for the
management of planning alternatives and versions via application programs.

e Complex digital terrain models: DTMs may be represented in four different ways in
CityGML and therefore also in the 3D city database: regular grids, triangular irregular
networks (TINs), 3D mass points and 3D break lines. For every level of detail, a
complex DTM consisting of any number of DTM components and DTM types can be
defined. Besides, it is possible to combine certain kinds of DTM representations for
the same geographic area with each other (e.g. mass points and break lines or grids
and break lines). In Oracle Spatial (but not Locator) Grid-based DTMs may be of
arbitrary size and are composed from separate tiles to a single overall grid using the
Oracle GeoRaster functionality. Please note that the Import/Export tool provides
functions to read and write TIN, mass point, and break line DTM components, but not
for raster based DTMs. GeoRaster data would have to be imported and exported using
other tools from e.g. Oracle, ESRI, or Safe Software.

e Complex city object modelling: The representation of city objects in the 3D city
database ranges from coarse models to geometrically and semantically fine grained
structures. The underlying data model is a complete realization of the CityGML data
model for the levels of detail (LOD) 0 to 4. For example, buildings can be represented
by simple, monolithic objects or can consist of an aggregation of building parts.
Extensions of buildings, like balconies and stairs, can be classified thematically and
provided with attributes just as single surfaces can be. LOD4 completes a LOD3
model by adding interior structures for 3D objects. For example, LOD4 buildings are
composed of rooms, interior doors, stairs, and furniture. This allows among other
things to select the floor space of a building, so that it can later be used e.g. to derive
SmartBuildings or to form 3D solids by extrusion [Doéllner et al. 2005]. Buildings can
be assigned addresses that are also stored in the 3D city database. Their implemen-
tation refers to the OASIS XAL Standard, which maps the address formats of the
different countries into a unified XML schema. In order to model whole complexes of
buildings, single buildings can be aggregated to form special building groups. The
same complex modelling applies to the other CityGML feature types like bridges,
tunnels, transportation and vegetation objects, and water bodies.

e Representation of generic and prototypical 3D objects: Generic objects enable the
storage and management of 3D geoobjects that are not explicitly modelled in

18

3D Geodatabase for CityGML 2016

CityGML yet, for example dams or city walls, or that are available in a proprietary file
format only. This way, files from other software systems like architecture or computer
graphics programs can be imported directly into the database (without interpretation).
However, application systems that would like to use these data must be able to
interpret the corresponding file formats after retrieving them back from the 3D
geodatabase.

Prototypical objects are used for memory-efficient management of objects that occur
frequently in the city model and that do not differ with respect to geometry and
appearance. Examples are elements of street furniture like lanterns, road signs or
benches as well as vegetation objects like shrubs, certain tree types etc. Every instance
of a prototypical object is represented by a reference to the prototype, a base point and
a transformation matrix for scaling, rotating and translating the prototype.

The geometries (and appearances like textures, colors etc.) of generic objects as well
as prototypes can be stored either using the geometry datatype of the spatial database
management system (Oracle Spatial/Locator or PostGIS) or in proprietary file formats.
In the latter case a single file may be saved for every object, but the file type (MIME
type), the coordinate transformation matrix that is needed to integrate the object into
the world coordinate reference system (CRS) as well as the target CRS have to be
specified.

Extendable object attribution: All objects in the 3D geodatabase can be augmented
with an arbitrary number of additional generic attributes. This way, it is possible to
add further thematic information as well as further spatial properties to the objects at
any time. In combination with the concept of generic 3D objects this provides a highly
flexible storage option for object types which are not explicitly defined in the
CityGML standard. Every generic attribute consists of a triple of attribute name, data
type, and value. Supported data types are: string; integer and floating-point numbers;
date; time; binary object (BLOB, e.g. for storing a file); geometry object according to
the specific geometry data type of Oracle or PostGIS respectively; simple, composite,
or aggregate 3D solids or surfaces. Please note that generic attributes of type BLOB or
geometry are not allowed as generic attributes in CityGML (and will, thus, not be
exported by the CityGML exporter). However, it may be useful to store binary data
associated with the individual city objects, for example, to store derived 3D computer
graphics representations.

Free, also recursive grouping of geoobjects: Geoobjects can be grouped arbitrarily.
The aggregates can be named and may also be provided with an arbitrary number of
generic attributes (see above). Object groups may also contain object groups, which
leads to nested aggregations of arbitrary depth. In addition, for every object of an
aggregation, its role in the group can be specified explicitly (qualified association).

External references for all geoobjects: All geoobjects can be provided with an
arbitrary number of references to corresponding objects in external data sources (i.e.
hyperlinks / linked data). For example, in case of building objects this allows to store

3D Geodatabase for CityGML 2016 19

e.g. the IDs of the corresponding objects in official cadasters, digital landscape
models, or Building Information Models (BIM). Each reference consists of an URI to
the external data store or database and the corresponding object ID or URI within that
external data store or database.

e Flexible 3D geometries: The geometry of most 3D objects can be represented through
the combination of solids and surfaces as well as any - also recursive - aggregation of
these elements. Each surface may has attached different textures and colors on both its
front and back face. It may also comprise information on transparency. Additional
geometry types (any geometry type supported by the spatial database management
system Oracle Spatial/Locator or PostGIS) can be added to the geoobjects by using
generic attributes.

e Open Source and Platform Independence: The entire software is freely accessible
to the interested public. The 3DCityDB is licensed under the Apache License, Version
2.0, which allows including 3DCityDB in commercial systems. You may obtain a
copy of the Apache License at http://www.apache.org/licenses/LICENSE-2.0. Both
the Importer/Exporter tool and the Web Feature Service are implemented in Java and
can be run on different platforms and operating systems.

1.2 System and design decisions

The 3D City Database is implemented as a relational database schema using the spatial
datatypes provided by a spatially-enhanced relational database management system
(SRDBMS). Above, external software applications and database stored procedures are
provided working on this database schema. Since only Oracle with the Spatial or Locator
licensing option (10G R2 or higher) and PostgreSQL (9.1 or higher) with PostGIS extension
(2.0 or higher) offer comprehensive support for 3D spatial data, the 3D City Database schema
is being provided for these two systems only.

In addition to the general advantages arising from the usage of a widely used relational
database management system (RDBMS), both Oracle Spatial/Locator and PostgreSQL/
PostGIS offer some important performance characteristics that allow an efficient implemen-
tation of the required functionalities:

e Both RDBMS support spatial data types with coordinates ranging from 2D to 4D.
Spatial indexes and filters can be 2D or 3D allowing for efficient spatial selections in
very large city models. Furthermore, the spatial data types are supported by a number
of commercial and Open Source GIS that provide a database connection as for
example ESRI’s ArcGIS/ArcSDE or Safe Software’s Feature Manipulation Engine
(FME). This enables such systems to directly access the data stored in the 3D
geodatabase.

e Rules can be implemented using stored procedures and trigger mechanisms which
propagate updates of objects to likewise affected objects in the database (transparent
for the user).

20 3D Geodatabase for CityGML 2016

The data model of the 3D City Database is based on the CityGML 2.0 standard. The object-
oriented data model of CityGML has been mapped to a purely relational data model with the
exception that geometry objects are mapped to the spatial datatypes provided by the SDBMS.
In order to achieve high performance for data manipulations and queries the mapping was
done manually with a number of optimizations. A few simplifying assumptions where made
regarding the usage of the CityGML concepts in the real world helping to increase
performance. These are documented in chapter 2.1.

Surface-based geometries like Polygons, TINs, MultiSurfaces as well as Solids are stored in a
special way: they are decomposed into their primitive surfaces and each surface is stored as an
individual tuple in one big surface table. The reason for this is that each surface can be
assigned multiple appearances (e.g. textures) in CityGML and, thus, each appearance must be
explicitly linkable to the corresponding surface. For Solids also the solid geometry objects are
stored in addition to their decomposed boundary surfaces allowing to apply spatial operations
on them like the computation of the volume.

The provided software tools like the Importer/Exporter application are implemented in the
Java language in order to be platform independent. The tools have been confirmed to run
under Microsoft Windows, Linux, and Apple Mac OS X. High performance is achieved by
exploiting multi-threading on multiprocessor or multi-core CPU systems.

1.3 List of changes between software versions

1.3.1 Notable changes between 3.3.0 and 3.0.0

Improved and updated features and functionalities:

e Updated database schema:
o Re-added GMLI D CODESPACE column to CITYOBJECT , APPEARANCE,
SURFACE_GEOMETRY, SURFACE_DATA, CITYMODEL (were dropped in
3.0.0).

o Added GMLID and GMLID CODESPACE column to ADDRESS table.

o Completely revised and updated documentation.
e The Import/Export tool and the WFS interface now require Java 8.
e Some bugfixes and improvements of the Import/Export tool.

New features and functionalities:

e Support for gITF export in addition to the KML/COLLADA export. In case of tiled
export, the generated KML/COLLADA/gITF models are organized with a hierarchical
directory structure according to a specific tiling schema.

e Newly included Cesium-based 3D web viewer (3DCityDB-Web-Map-Client) allows
direct 3D visualization and interactive exploration of the datasets (KML/gITF modes +
online spreadsheets) exported using the Importer/Exporter.

3D Geodatabase for CityGML 2016 21

The Import/Export tool now supports checking of the version of the 3DCityDB before
connecting.

Added database procedures to calculate the ENVELOPE of city objects. The
Importer/Exporter also provides a user dialog to calculate the ENVELOPE of city
objects in the database.

The MIGRATION scripts for Oracle have been optimized to achieve a better
performance.

Dropped items or functionalities:

Direct upload of the exported data to Google Spreadsheet is not supported by the
SPSHG plugin. This functionality might be back in future releases.

1.3.2 Notable changes between 3.0.0 and 2.1.0

Improved and updated features and functionalities:

Updated and extended database schema supporting CityGML 2.0. CityGML 1.0
datasets can be converted on-the-fly into CityGML 2.0. Export and import of
CityGML 1.0 datasets are still supported.

Adaption and extension of the CityGML Importer/Exporter as well as of the KML/
COLLADA Exporter to the new database schema.

Performance improvements when reading and writing large CityGML datasets over a
network.

Improved support of 3D city models which use texture atlases regarding a more
compact storage and a higher import, export, and visualization performance.

Improved handling of 3D models with large coordinate values in the
KML/COLLADA Exporter.

Both Oracle and PostGIS databases are supported by the same Import/Export tool
(there are no longer separate versions of the Import/Export tool).

Unified concept for the storage of image data in Oracle and PostGIS.

Completely reworked, extended, and updated documentation.

New features and functionalities:

Support of all new CityGML 2.0 feature types like bridges and tunnels with respect to
the previous version of CityGML. Support of CityGML 2.0’s grouping concept for
generic attributes.

CityGML Solid geometry objects are now stored as 3D solid geometries in Oracle
(starting from version 11g) and PostGIS in addition to their decomposition into the
individual boundary surfaces.

This software package comes with an implementation of an OGC compliant basic
Web Feature Service 2.0.

22 3D Geodatabase for CityGML 2016

e The newly included ‘Spreadsheet Generator’ plugin allows exporting data from a 3D
City Database instance into tables. Supported output formats are Microsoft Excel,
CSV, and Google Spreadsheets.

e Database scripts for Oracle and PostGIS for the migration of a 3DCityDB database
version 2.1.0 to version 3.1.0.

e Support of Oracle Spatial and Locator licensing options.
e Schema files of the database schemas are included for Oracle and PostGIS

e A special database procedure allows performing a change of the spatial reference
system of a 3D city database. Coordinate transformations will be carried out in-situ.

e Support of GenericCityObjects having point and/or line geometries in the KML/
COLLADA Exporter.

Dropped items or functionalities:

e The ‘Merging’ plugin of the previous Importer/Exporter version 1.6.0 was not updated
to the new database schema and has been removed.

e The database table ORTHOPHOTO which was part of the previous version of the
3DCityDB schema was dropped. It was not supported by the previous versions of the
Import/Export tool anyway.

e The tool for importing and exporting raster data for Oracle Spatial is no longer
supported. Please use third party software instead.

e The Oracle and PostgreSQL scripts for creating a read-only user have been removed
from this release. It is planned to include a reworked version of these scripts in the
next minor release.

1.4 Development history

The development of the 3D City Database was always closely related to the development of
the CityGML standard [Kolbe & Groger 2003]. It was started back in 2003 by Dr. Kolbe and
Prof. Pliimer at the Institute for Cartography and Geoinformation at University of Bonn. In
the period from November 2003 to December 2005 the official virtual 3D city model of
Berlin, commissioned by The Berlin Senate and Berlin Partner GmbH, was developed within
a pilot project funded by the European Union [Pliimer et al. 2005, Berlin 3D]. Since then, the
model has been playing a central role in the three-dimensional spatial data infrastructure of
Berlin and opened up a multitude of applications for the public and private sector alike. As an
example the virtual city model is successfully used for presentation of the business location,
its urban development combined with application related information to politicians, investors,
and the public in order to support civic participation, provide access to decision-making
content, assist in policy-formulation, and control implementation processes [Ddllner et al.
2006]. 3DCityDB was key in demonstrating the real world usage of CityGML to the Open
Geospatial Consortium on the one hand, and the practical usability and versatility of
CityGML to the city of Berlin on the other hand. This first development phase was carried out

3D Geodatabase for CityGML 2016 23

by University of Bonn in collaboration with the company /at/lon GmbH. Oracle Spatial was
the only supported SDBMS in that phase and the next (3DCityDB Versions 0.2 up to 1.3).

Within the framework Europdische Fonds fiir regionale Entwicklung (EFRE II) the project
Geodatenmanagement in der Berliner Verwaltung — Amtliches 3D-Stadtmodell fiir Berlin
allowed for upgrading the official 3D city model based on the former CityGML specification
draft 0.4.0 in the year 2007. The developments were carried out by the Institute for Geodesy
und Geoinformation Science (IGG) of the Berlin University of Technology (where Kolbe
became full professor for Geoinformation Science in 2006) on behalf of the Berliner
Senatsverwaltung fiir Wirtschaft, Arbeit und Frauen and the Berlin Partner GmbH (former
Wirtschaftsforderung Berlin International). The relational database model (3DCityDB
versions 1.4 up to 1.8) was implemented and evaluated in cooperation with 3DGeo GmbH
(later bought by Autodesk GmbH) in Potsdam. A special database interface for LandXPlorer
was provided by 3DGeo / Autodesk. Later on, a first version of the Java based CityGML
Importer/Exporter was developed [Stadler et al. 2009].

In August 2008, CityGML 1.0.0 became an adopted standard of the Open Geospatial
Consortium (OGC). In the follow-up project Digitaler Gestaltplan Potsdam starting in 2010
the 3DCityDB version 2 was developed which brought a full support for all CityGML 1.0.0
feature types. The KML/COLLADA exporter was added as well as the ‘Matching’ plugin.
This project was carried out by /GG of TU Berlin on behalf of and in collaboration with the
company virtualcitySYSTEMS (VCS) in Berlin. In 2012 the developer team at TU Berlin
received the Oracle Spatial Excellence Award for Education and Research from Oracle USA
for our work on 3DCityDB. Also in 2012 3DCityDB was ported to PostgreSQL/PostGIS by
Felix Kunde, a master student from the University of Potsdam, who did his master thesis in
collaboration with /GG [Kunde 2013].

In August 2012, CityGML 2.0.0 became an adopted standard of the Open Geospatial Consor-
tium (OGC). In September 2012, Prof. Kolbe moved from IGG, TU Berlin to the Chair of
Geoinformatics at Technische Universitit Miinchen (TUM). The companies
virtualcitySYSTEMS GmbH in Berlin and M.O.S.S. GmbH in Taufkirchen (near Munich)
have also been using the 3D City Database in their commercial projects for a number of years.
In this context, the Chair of Geoinformatics at TUM and the companies virtualcitySYSTEMS
and M.O.S.S. signed an official collaboration agreement on the joint further development of
3DCityDB and its tools. The work on the new major release version 3.0.0 began in 2013
when Dr. Nagel finished his PhD and joined the company VCS.

24

3D Geodatabase for CityGML 2016

3D Geodatabase for CityGML 2016 25

2 Data Modelling and Database Design

In this section the slightly simplified data model with respect to CityGML is described at the
conceptual level using UML class diagrams. These diagrams form the basis for the
implementation-dependent realization of the model with a relational database system which is
presented in section 2.3. However, UML diagrams may also form the basis for other
implementations e.g. for the definition of an exchange format based on XML or GML. The
UML diagrams of the 3D city model are depicted in section 2.2.

2.1 Simplification compared to CityGML 2.0.0

CityGML is a common information model for 3D urban objects and provides a
comprehensive and extensible representation of the objects. It is explained in detail in the
CityGML specification [Groger et al. 2008, Groger et al. 2012] and [Kolbe 2009]. An analysis
of the previous versions of the 3D City Database indicated that for the data collected and
processed a less complex schema is sufficient. Using a simplified schema usually allows
improving system performance. Therefore, the first task was related to database design
aspects with respect to adjusting the comprehensive CityGML features. As result a simplified
database schema was generated, allowing an optimized workflow and guaranteeing efficient
processing time. The related UML-diagrams were discussed and coordinated with the project
partners and translated into the relational schema. Based on this work the SQL scripts for
setting up the Oracle and PostgreSQL database schema were generated. Please note, that all
test CityGML datasets (versions 1.0.0 and 2.0.0) from the CityGML homepage (and others)
can be stored and managed without restrictions with this simplified database schema.

2.1.1 Multiplicities, cardinalities and recursions
Simplifications with respect to the CityGML specification were made as follows:

e Multiplicities of attributes
Attributes with a variable amount of occurrences (*) are substituted by a data type
enabling the storage of arbitrary values (e.g. data type String with a predefined
separator) or by an array with a predefined amount of elements representing the
number of objects that participate in the association. This means that object attributes
can be stored in a single column.

e Cardinalities and types of relationships
n:m relations require an additional table in the database. This table consists of the
primary keys of both elements’ tables which form a composite primary key. If the
relation can be restricted to a 1:n or n:1 relationship the additional table can be
avoided. Therefore, all n:m relations in CityGML were checked for a more restrictive
definition. This results in simplified cardinalities and relations.

e Simplified treatment of recursions
Some recursive relations are used in the CityGML data model. Recursive database
queries may cause high cost, especially if the amount of recursive steps is unknown. In
order to guarantee good performance, implementation of recursive associations
receive two additional columns which contain the ID of the parent and of the root

26 3D Geodatabase for CityGML 2016

element. For example, if all building parts related to a specific building are queried,
only those tuples containing the ID of the building as root element have to be selected.
Thus, typical queries concerning object geometry remain high-performance.

2.1.2 Data type adaptation

Data types specified in CityGML were substituted by data types which allow an effective
representation in the database. Strings for example are used to represent code types and
number vectors; GML geometry types were changed to the database geometry data type.
Matrices are stored each one as String data type, with values listed in a row-major sequence
separated by spaces.

2.1.3 Project specific classes and class attributes

The 3D city database may contain some classes for representation of project specific
metadata, version control and attributes for representation of additional project specific
information. Since this information is represented in the CityGML specification differently or
even not at all, appropriate classes and class attributes are added or respectively adopted.

2.1.4 Simplified design of GML geometry classes

Spatial properties of features are represented by objects of GML3’s geometry model based on
the ISO 19107 standard ‘Spatial Schema’ [Herring 2001], representing 3D geometry
according to the well-known Boundary Representation (B-Rep, cf. [Foley et al. 1995]).
Actually only a subset of the GML3 geometry package is used. Moreover, for 2D and 3D
surface-based geometry types a simpler but equally powerful model is used: These geometries
are stored as polygons, which are aggregated to MultiSurfaces, CompositeSurfaces,
TriangulatedSurfaces, Solids, MultiSolids, as well as CompositeSolids.

2.2 UML class diagram

The following pages cite several parts of the CityGML specification [Groger et al., 2012]
which are necessary for a better understanding. Main focus is put on explaining the
customization and the differences to the CityGML standard.

Design decisions in the model are explicitly visualised within the UML diagrams. Following
models are presented in detail:

e Geometric-topological model
e Appearance model
e Thematic Model

o CityGML Core
Building model
Bridge model
City furniture
Digital Terrain Model
Generic objects and attributes
Land use
Transportation objects

O O O O O O O

3D Geodatabase for CityGML 2016 27

o Tunnel model
o Water bodies
o Vegetation objects

For intuitive understanding, classes which will be merged to a single table in the relational
schema, are shown as orange blocks in the UML diagrams. n:m relations, which only can be
represented by additional tables, are represented as green blocks.

2.2.1 Geometric-topological Model

The geometry model of CityGML consists of primitives, which may be combined to form
complexes, composite geometries or aggregates. A zero-dimensional object is modelled as a
Point, a one-dimensional as a Curve. A curve is restricted to be a straight line, thus only the
GML3 class LineString is used.

Combined geometries can be aggregates, complexes or composites of primitives (see
illustration in figure 1). In an Aggregate, the spatial relationship between components is not
restricted. They may be disjoint, overlapping, touching, or disconnected. GML3 provides a
special aggregate for each dimension, a MultiPoint, a MultiCurve, a MultiSurface or a
MultiSolid. In contrast to aggregates, a Complex is topologically structured: its parts must be
disjoint, must not overlap and are allowed to touch, at most, at their boundaries or share parts
of their boundaries. A Composite is a special complex provided by GML3. It can only contain
elements of the same dimension. Its elements must be disjoint as well, but they must be
topologically connected along their boundaries. 4 Composite can be a CompositeSolid, a
CompositeSurface, or CompositeCurve.

MultiSurface GeometricComplex CompositeSurface

Figure 1: Different types of aggregated geometries [Groger et al., 2012]

The modelling of two-dimensional and three-dimensional geometry types is handled in a
simplified way. All surface-based geometries are stored as polygons, which are aggregated to
MultiSurfaces, CompositeSurfaces, TriangulatedSurfaces, Solids, MultiSolids, as well as
CompositeSolids accordingly. This simplification substitutes the more complex representation
used for those GML geometry classes in grey blocks in Figure 2. Mapping the UML diagram
to the relational schema now requires only one table (SURFACE GEOMETRY), which is
explained in chapter 2.3.2.2.

28 3D Geodatabase for CityGML 2016

Figure 2: Geometrical-topographical model.
For simplification the geometry classes in the grey block are substituted by the construct in the orange block

In order to implement topology, CityGML uses the XML concept of XLinks provided by
GML. Each geometry object that should be shared by different geometric aggregates or
different thematic features is assigned a unique identifier, which may be referenced by a GML
geometry property using a href attribute. The XLink topology is simple and flexible and
nearly as powerful as the explicit GML3 topology model. However, a disadvantage of the
XLink topology is that navigation between topologically connected objects can only be
performed in one direction (from an aggregate to its components), not (immediately)
bidirectional, as it is the case for GML’s built-in topology.

2.2.2 Implicit Geometry
The concept of implicit geometries is an enhancement of the GML3 geometry model.

An implicit geometry is a geometric object, where the shape is stored only once as a
prototypical geometry, for example a tree or other vegetation objects, a traffic light or traffic
sign. This prototypic geometry object is re-used or referenced many times, wherever the

3D Geodatabase for CityGML 2016 29

corresponding feature occurs in the 3D city model. Each occurrence is represented by a link to
the prototypic shape geometry (in a local Cartesian coordinate system), by a transformation
matrix that is multiplied with each 3D coordinate of the prototype, and by an anchor point
denoting the base point of the object in the world coordinate reference system. The concept of
implicit geometries is similar to the well-known concept of primitive instancing used for the
representation of scene graphs in the field of computer graphics [Foley et al. 1995].

Figure 3: Implicit Geometry model

Implicit geometries may be applied to features from different thematic fields in order to
geometrically represent the features within a specific level of detail (LOD). Thus, each
CityGML thematic extension module (like Building, Bridge, and Tunnel etc.) may define
spatial properties providing implicit geometries for its thematic classes.

The shape of an implicit geometry can be represented in an external file with a proprietary
format, e.g. a VRML file, a DXF file, or a 3D Studio MAX file. The reference to the implicit
geometry can be specified by an URI pointing to a local or remote file, or even to an
appropriate web service. Alternatively, a GML3 geometry object can define the shape. This
has the advantage that it can be stored or exchanged inline within the CityGML dataset.
Typically, the shape of the geometry is defined in a local coordinate system where the origin
lies within or near to the object’s extent. If the shape is referenced by an URI, also the MIME
type of the denoted object has to be specified (e.g. “model/vrml” for VRML models or
“model/x3d+xml” for X3D models).

The implicit representation of 3D object geometry has some advantages compared to the
explicit modelling, which represents the objects using absolute world coordinates. It is more
space-efficient, and thus more extensive scenes can be stored or handled by a system. The
visualization is accelerated since 3D graphics hardware supports the scene graph concept.
Furthermore, the usage of different shape versions of objects is facilitated, e.g. different
seasons, since only the library objects have to be exchanged.

2.2.3 Appearance Model

Information about a surface’s appearance, i.e. observable properties of the surface, is
considered an integral part of virtual 3D city models in addition to semantics and geometry.
Appearance relates to any surface-based theme, e.g. infrared radiation or noise pollution, not
just visual properties and can be represented by — among others — textures and georeferenced
textures. Appearances are supported for an arbitrary number of themes per city model. Each
LoD of a feature can have individual appearances. Each city object or city model respectively
may store its own appearance data. Therefore, the base CityGML classes CityObject and
CityModel contain a relation appearance and appearanceMember respectively.

30 3D Geodatabase for CityGML 2016

Figure 4: Appearance model

Themes are represented by an identifier only. The appearance of a city model for a given
theme is defined by a set of objects of class Appearance, referencing this theme through the
attribute theme. All appearance objects belonging to the same theme compose a virtual group.
An Appearance object collects surface data relevant for a specific theme through the relation
surfaceDataMember. Surface data is represented by objects of the abstract class
_SurfaceData. Its only attribute is the Boolean flag isFront, which determines the side (front
and back face of the surface) a surface data object applies to.

A constant surface property is modelled as material. A surface property, which depends on the
location within the surface, is modelled as texture. Each surface object can have both a
material and a texture per theme and side. This allows for providing both a constant
approximation and a complex measurement of a surface’s property simultaneously. If a
surface object is to receive multiple textures or materials, each texture or material requires a
separate theme. The mixing of themes or their usage is not explicitly defined but left to the
application.

3D Geodatabase for CityGML 2016 31

Materials define light reflection properties being constant for a whole surface object. The
definition of the class X3DMaterial is adopted from the X3D and COLLADA specification
(cf. X3D, COLLADA specification):

o diffuseColor defines the colour of diffusely reflected light.
o specularColor defines the colour of a directed reflection.
o emissiveColor is the colour of light generated by the surface.

All colours use RGB values with red, green, and blue chanels, each defined as value between
0 and 1. Transparency is stored separately using the transparency element where 0 stands for
fully opaque and 1 for fully transparent. ambientIntensity specifies the minimum percentage
of diffuseColor that is visible regardless of light sources. shininess controls the sharpness of
the specular highlight. 0 produces a soft glow while 1 results in a sharp highlight. isSmooth
gives a hint for normal interpolation. If this Boolean flag is set to true, vertex normals should
be used for shading (Gouraud shading). Otherwise, normals should be constant for a surface
patch (flat shading). Target surfaces are specified using target elements. Each element
contains the URI of one target surface geometry object.

The base class for textures is _AbstractTexture. Here, textures are always raster-based 2D
textures. The raster image is specified by imageURI using a URI and may contain an arbitrary
image data resource, even a preformatted request for a web service. The image data format
can be defined using standard MIME types in the mimeType element. Textures can be
qualified by the attribute textureType, differentiating between textures, which are specific for
a certain object (specific) and prototypic textures being typical for that object surface
(typical). Textures may also be classified as unknown. The specification of texture wrapping
is adopted from the COLLADA standard. Possible values of the attribute wrapMode are none,
wrap, mirror, clamp and border.

_AbstractTexture is further specialised according to the texture parameterisation, i.e. the
mapping function from a location on the surface to a location in the texture image. Texture
parameterisation uses the notion of texture space, where the texture image always occupies of
the region [0,1]* regardless of the actual image size or aspect ratio. The lower left image
corner is located at the origin. To receive textures, the mapping function must be known for
each surface object.

The class GeoreferencedTexture describes a texture that uses a planimetric projection. Such a
texture has a unique mapping function which is usually provided with the image file (e.g.
georeferenced TIFF) or as a separate ESRI world file. The search order for an external
georeference is determined by the Boolean flag preferWorldFile. Alternatively, inline
specification of a georeference similar to a world file is possible. This internal georeference
specification always takes precedence over any external georeference. referencePoint defines
the location of the centre of the upper left image pixel in world space and corresponds to
values 5 and 6 in an ESRI world file. Since GeoreferencedTexture uses a planimetric
projection, referencePoint is two-dimensional and the orientation defines the rotation and
scaling of the image in form of a 2x2 matrix (a list of 4 doubles in row-major order
corresponding to values 1, 3, 2, and 4 in an ESRI world file). The CRS of this transformation
is identical to the referencePoint’s CRS. If neither an internal nor an external georeference is

32 3D Geodatabase for CityGML 2016

given, the GeoreferencedTexture is invalid. Target surfaces are specified using target
elements. Each element contains the URI of one target surface geometry object. All target
surface objects share the mapping function defined by the georeference.

The class ParameterizedTexture describes a texture with a target-dependent mapping
function. Each target surface geometry object is specified as URI in the wuri attribute of a
separate farget element. The mapping is defined by associated classes of
_TextureParameterization:

e TexCoordList for the concept of texture coordinates, defining an explicit mapping of a
surface’s boundary points to points in texture space, and

e TexCoordGen when using a common 3x4 transformation matrix from world space to
texture space, specified by the attribute worldToTexture.

2.2.4 Thematic model

The thematic model consists of the class definitions for the most important types of objects
within virtual 3D city models. Most thematic classes are (transitively) derived from the basic
classes Feature and FeatureCollection, the basic notions defined in ISO 19109 and GML3 for
the representation of features and their aggregations. Features contain spatial as well as non-
spatial attributes, which are mapped to GML3 feature properties with corresponding data
types. Geometric properties are represented as associations to the geometry classes described
in chapter 2.2.1 The thematic model also comprises different types of interrelationships
between Feature classes like aggregations, generalizations, and associations.

The aim of the explicit modelling is to reach a high degree of semantic interoperability
between different applications. By specifying the thematic concepts and their semantics along
with their mapping to UML and GML3, different applications can rely on a well-defined set
of Feature types, attributes, and data types with a standardised meaning or interpretation. In
order to allow also for the exchange of objects and/or attributes that are not explicitly
modelled in CityGML, the concepts of GenericCityObjects and GenericAttributes have been
introduced.

2.2.4.1 Core Model

The base class of all thematic classes within CityGML’s data model is the abstract class
_CityObject. CityObject provides a creation and a termination date for the management of
histories of features as well as generic attributes and external references to corresponding
objects in other data sets. CityObject is a subclass of the GML class Feature, thus it may
inherit multiple names from Feature, which may be optionally qualified by a codeSpace. This
enables the differentiation between, for example, an official name from a popular name or
names in different languages (c.f. the name property of GML objects, Cox et al., 2004). The
generalisation property generalizesTo of _CityObject may be used to relate features, which
represent the same real-world object in different LoD, i.e. a feature and its generalized
counterpart(s). The direction of this relation is from the feature to the corresponding
generalised feature.

3D Geodatabase for CityGML 2016 33

Features of _CityObject and its specialized subclasses may be aggregated to a CityModel,
which is a feature collection with optional metadata. Generally, each feature has the attributes
class, function, and usage, unless it is stated otherwise. The class attribute can occur only
once, while the attributes usage and function can be used multiple times. The class attribute
describes the classification of the objects, e.g. road, track, railway, or square. The attribute
function contains the purpose of the object, like national highway or county road, while the
attribute usage defines whether an object is e.g. navigable or usable for pedestrians. The
attributes class, function and usage are specified as gml:CodeType. The values of these
properties can be enumerated in code lists. Furthermore, for each feature the geographical
extent can be defined using the Envelope element. Minimum and maximum coordinate values
have to be assigned to opposite corners of the feature’s bounding box.

Figure 5: Core Model and thematic top level classes

The subclasses of CityObject comprise the different thematic fields of a city model, in the
following covered by separate thematic models: building model (_A4bstractBuilding), tunnel
model (_AbstractTunnel), bridge model (_AbstractBridge), city furniture model
(CiyFurniture), digital terrain model (ReliefFeature), land use model (LandUse),
transportation model (7ransportationObject), vegetation model (_VegetationObject), water
bodies model (WaterObject) and generic city object model (GenericCityObject). The latter
one allows for the modelling of features, which are not explicitly covered by one of the other
models. The separation into these models strongly correlates with CityGML’s extension
modules, each defining a respective part of a virtual 3D city model.

34 3D Geodatabase for CityGML 2016

3D objects are often derived from or have relations to objects in other databases or data sets.
For example, a 3D building model may have been constructed from a two-dimensional
footprint in a cadastre data set. The reference of a 3D object to its corresponding object in an
external data set is essential, if an update must be propagated or if additional data is required
(like the name and address of a building’s owner in a cadastral information system). In order
to supply such information, each _CityObject may have External References to corresponding
objects in external data sets. Such a reference denotes the external information system and the
unique identifier of the object in this system.

CityObjectGroups aggregate CityObjects and furthermore are defined as special CityObjects.
This implies that a group may become a member of another group realizing a recursive
aggregation schema. Since CityObjectGroup is a feature, it has the optional attributes class,
function and usage. The class attribute allows a group classification with respect to the stated
function and may occur only once. The function attribute is intended to express the main
purpose of a group, possibly to which thematic area it belongs (e.g. site, building,
transportation, architecture, unknown etc.). The attribute usage can be used, if the object’s
usage differs from its function. The attributes class, function and usage are specified as
gml:CodeType. The values of these properties can be enumerated in code lists.

Each member of a group may be qualified by a role name, reflecting the role each CityObject
plays in the context of the group. Furthermore, a CityObjectGroup can optionally be assigned
an arbitrary geometry object. This may be used to represent a generalised geometry generated
from the member’s geometries. The parent association linking a CityObjectGroup to a
CityObject allows for the modelling of a generic hierarchical grouping concept. This concept
is used, for example, to represent storeys in buildings. See Figure 5 the simplified UML
diagram.

2.2.4.2 Building model

Buildings can be represented in five levels of detail (LoDO to LoD4). The building model
allows the representation of simple buildings that consist of only one component, as well as
the representation of complex relations between parts of a building, e.g. a building consisting
of three parts — a main house, a garage and an extension. The parts can again consist of parts
etc. The subclasses Building and BuildingPart of _AbstractBuilding enable these modelling
options. In the case of a simple, one-piece house there is only one Building which inherits all
attributes and relations from _AbstractBuilding (cf. Figure 6). However, such a Building can
also comprise BuildingParts which likewise inherit all properties from AbstractBuilding: the
building’s class, function (e.g. residential, public, or industry), usage, year of construction,
year of demolition, roof type, measured height, and the number and individual heights of all
its storeys above and below ground (cf. Figure 7). Furthermore, Addresses can be assigned to
Buildings or BuildingParts. In particular, BuildingParts may again comprise BuildingParts as
components, because the composition relation is inherited. This way a tree-like hierarchy can
be created whose root object is a Building and whose non-root nodes are BuildingParts. The
attribute values are generally filled in the lower hierarchy level, because basically every part
can have its own construction year and function. However, the function can also be defined in

3D Geodatabase for CityGML 2016 35

the root of the hierarchy and therefore span the whole building. The individual BuildingParts
within a Building must not penetrate each other and must form a coherent object.

Building witt
building parts
(repres§nt§d | ilding consist-
one Building L

I of one part
feature and o
included Buil oresented as

> Building

ingPart featu
ingPar ture)

Figure 6: Example of buildings consisting of one and two building parts [Groger et al., 2008]

36 3D Geodatabase for CityGML 2016

Figure 7: UML diagram of building model

The geometric representation of an _AbstractBuilding is successively refined from LODO to
LOD4. Therefore, a single building can have multiple spatial representations in different
levels of detail at the same time by Solid, MultiSurface, and/or MultiCurve (cf. Figure 7).

In LoDO, the building can be represented by horizontal, 3-dimentional surfaces describing the
footprint and the roof edge. In LoD1, a building model consists of a geometric representation
of the building volume. Optionally, a MultiCurve representing the TerrainlntersectionCurve
can be specified. This geometric representation is refined in LoD2 by additional MultiSurface
and MultiCurve geometries, used for modelling architectural details like a roof overhang,

3D Geodatabase for CityGML 2016 37

columns, or antennas. In LoD2 and higher LoDs the outer facade of a building can also be
differentiated semantically by the classes BoundarySurface and Buildinglnstallation. A
_BoundarySurface is a part of the building’s exterior shell with a special function like wall
(WallSurface), roof (RoofSurface), ground plate (GroundSurface), or closing surface
(ClosureSurface) as shown in Figure 8. Closure surfaces can be used to virtually seal open
buildings as for example hangars, allowing e.g. volume calculation. The BuildingInstallation
class is used for building elements like balconies, chimneys, dormers, or outer stairs, strongly
affecting the outer appearance of a building. A Buildinglnstallation is used for the
representation of chimneys, stairs, balconies etc. and optionally has the attributes class,
function, and usage.

\\ InteriorWall

e Surface

LN Opening
Door

Figure 8: Boundary surfaces

In LoD3, the openings in _BoundarySurface objects (doors and windows) can be represented
as thematic objects. In LoD4, the highest level of resolution, also the interior of a building,
composed of several rooms, is represented in the building model by the class Room. The
aggregation of rooms according to arbitrary, user-defined criteria (e.g. for defining the rooms
corresponding to a certain storey) is achieved by employing the general grouping concept
provided by CityGML. Interior installations of a building, i.e. objects within a building which
(in contrast to furniture) cannot be moved, are represented by the class
IntBuildinglnstallation. If an installation is attached to a specific room (e.g. radiators or
lamps), they are associated with the Room class, otherwise (e.g. in case of rafters or pipes)
with _AbstractBuilding. A Room may have the attributes class, function, and usage referenced
to external code lists. The class attribute allows a classification of rooms with respect to the
stated function, e.g. commercial or private rooms, and occurs only once. The function
attribute is intended to express the main purpose of the room, e.g. living room, kitchen. The
attribute usage can be used if the object’s usage differs from its function. Both attributes can
occur multiple times.

The visible surface of a room is represented geometrically as a Solid or MultiSurface.
Semantically, the surface can be structured into specialised BoundarySurfaces, representing
floor (FloorSurface), ceiling (CeilingSurface), and interior walls (I/nteriorWallSurface) (cf.
Figure 8). Room furniture, like tables and chairs, can be represented in the CityGML building
model with the class BuildingFurniture. A BuildingFurniture may have the attributes class,
function, and usage.

38 3D Geodatabase for CityGML 2016

2.2.4.3 Bridge Model

The bridge model was developed in analogy to the building model (cf. section 2.2.4.2) with
regard to structure and attributes [Groger et al., 2008]. The bridge model allows for the
representation of the thematic, spatial and visual aspects of bridges and bridge parts in four
levels of detail, LOD 1 — 4. A (movable or unmovable) bridge can consist of multiple
BridgeParts. Like Bridge, BridgePart is a subclass of AbstractBridge and hence, has the
same attributes and relations. The relation consistOfBridgePart represents the aggregation
hierarchy between a Bridge (or a BridgePart) and it’s BridgeParts. By this means, an
aggregation hierarchy of arbitrary depth can be modelled. The semantic attributes of an
_AbstractBridge are class, function, usage and is_movable. The attribute class is used to
classify bridges, e.g. to distinguish different construction types (cf. Figure 9). The attribute
function allows representing the utilization of the bridge independently of the construction.
Possible values may be railway bridge, roadway bridge, pedestrian bridge, aqueduct, etc. The
option to denote a usage which is divergent to one of the primary functions of the bridge
(function) is given by the attribute usage. Each Bridge or BridgePart feature may be assigned
zero or more addresses using the address property.

Figure 9: Example of bridge consisting of bridge parts

The spatial properties are defined by a solid for each of the four LODs (relations /od1Solid to
lod4Solid). In analogy to the building model, the semantical as well as the geometrical
richness increases from LODI1 (blocks model) to LOD3 (architectural model). Interior
structures like rooms are dedicated to LOD4. To cover the case of bridge models where the
topology does not satisfy the properties of a solid (essentially water tightness), a multi-surface
representation is allowed (lod1MultiSurface to lod4MultiSurface). The line where the bridge
touches the terrain surface is represented by a terrain intersection curve, which is provided for
each LOD (relations lodITerrainlntersection to lod4Terrainintersection). In addition to the
solid representation of a bridge, linear characteristics like ropes or antennas can be specified
geometrically by the lod I MultiCurve to lod4MultiCurve relations.

The thematic boundary surfaces of a bridge are defined in analogy to the building module.
_BoundarySurface is the abstract base class for several thematic classes, structuring the
exterior shell of a bridge as well as the visible surfaces of rooms, bridge construction elements
and both outer and interior bridge installations. From BoundarySurface, the thematic classes
RoofSurface, WallSurface, GroundSurface, OuterCeilingSurface, OuterFloorSurface,
ClosureSurface, FloorSurface, InteriorWallSurface, and CeilingSurface are derived.

3D Geodatabase for CityGML 2016 39

———— RoofSurface

Window

— WallSurface

OuterFloorSurface —

‘eilingSurface

Figure 10: Different BoundarySurfaces of a bridge

Bridge elements which do not have the size, significance or meaning of a BridgePart can be
modelled either as BridgeConstructionElement or as Bridgelnstallation. Elements which are
essential from a structural point of view are modelled as BridgeConstructionElement, for
example structural elements like pylons, anchorages etc. (cf. Figure 9Figure 11). A general
classification as well as the intended and actual function of the construction element are
represented by the attributes class, function, and usage. The visible surfaces of a bridge
construction element can be semantically classified using the concept of boundary surfaces
representing floor (FloorSurface), ceiling (CeilingSurface), and interior walls
(InteriorWallSurface) (cf. Figure 10). Whereas a BridgeConstructionElement has structural
relevance, a Bridgelnstallation represents an element of the bridge which can be eliminated
without collapsing of the bridge (e.g. stairway, antenna, and railing) (cf. Figure 11).
Bridgelnstallations occur in LOD 2 to 4. The class Bridgelnstallation contains the semantic
attributes class, function and usage. The attribute class gives a classification of installations of
a bridge. With the attributes function and usage, nominal and real functions of the bridge
installation can be described.

Figure 11: Example of bridge consisting of BridgeConstructionElement and Bridgelnstallation

40 3D Geodatabase for CityGML 2016

In LOD3 and LOD4, a BoundarySurface may contain _Openings like doors and windows.
The classes BridgeRoom, IntBridgelnstallation and BridgeFurniture allow for the
representation of the bridge interior. They are designed in analogy to the classes Room,
IntBuildinglnstallation and BuildingFurniture of the building module and share the same
meaning. The bridge interior can only be modelled in LOD4.

Figure 12: UML diagram of bridge model

3D Geodatabase for CityGML 2016 41

2.2.4.4 CityFurniture Model

City furniture objects are immovable objects like lanterns, traffic lights, traffic signs, flower
buckets, advertising columns, benches, delimitation stakes, or bus stops. The class
CityFurniture may have the attributes class, function and usage (cf. UML-diagram, Figure
13). Their possible values are explained in detail in the CityGML specification. The class
attribute allows an object classification like traffic light, traffic sign, delimitation stake, or
garbage can, and can occur only once. The function attribute describes, to which thematic area
the city furniture object belongs to (e.g. transportation, traffic regulation, architecture etc.),
and can occur multiple times. The attribute usage denotes the real purpose of the city object,
and can occur multiple times as well.

[~

Figure 13: City furniture model

Since CityFurniture is a subclass of CityObject and hence is a feature, it inherits the attribute
gml:name. As with any CityObject, CityFurniture objects may be assigned
ExternalReferences and GenericAttributes. For ExternalReferences city furniture objects can
have links to external thematic databases. Thereby, semantical information of the objects,
which cannot be modelled in CityGML, can be transmitted and used in the 3D city model for
further processing, for example information from systems of power lines or pipelines, traffic
sign cadastre, or water resources for disaster management.

City furniture objects can be represented in city models with their specific geometry, but in
most cases the same kind of object has an identical geometry. The geometry of CityFurniture
objects in LoD 1-4 may be represented by an explicit geometry (lodXGeometry where X is
between 1 and 4) or an ImplicitGeometry object (lodXImplicitRepresentation with X between
1 and 4). In the concept of ImplicitGeometry the geometry of a prototype city furniture object
is stored only once in a local coordinate system and referenced by a number of features.
Spatial information of city furniture objects can be taken from city maps or from public and
private external information systems. In order to specify the exact intersection of the DTM
with the 3D geometry of a city furniture object, the latter can have a TerrainIntersectionCurve
(TIC) for each LoD. This allows for ensuring a smooth transition between the DTM and the
city furniture object.

42 3D Geodatabase for CityGML 2016

2.2.4.5 Digital Terrain Model

CityGML includes a very adaptable digital terrain model (DTM) which permits the
combination of heterogeneous DTM types (grid, TIN, break lines, mass points) available in
different levels of detail.

A DTM fitting to a certain city model is represented by the class ReliefFeature. This is a
CityObject having the LoD step that fits the DTM as attribute. A relief consists of several
ReliefComponents. Each of these components that are likewise CityObjects also comprises a
LoD step. Individual geometrical types of the components are defined by the four subclasses
of ReliefComponent: breaklines, triangular networks (TINs), mass points, and grids (Raster).
Geometrically, the corresponding ISO 19107 or GML classes define these types: breaklines
by a single MultiCurve, TINs by TriangulatedSurfaces, mass points by MultiPoint, and Raster
by RectifiedGridCoverage.

Figure 14: UML diagram representing the digital terrain model

A relief can contain ReliefComponents of heterogeneous type and different LoDs. A relief in
LoD2, for example, can contain some LoD3-TIN-ReliefComponents beside a LoD2-Raster-
ReliefComponent. In some cases even a LoD1 grid may exist in some regions of the relief.

In order to geometrically separate the individual components of a grid, which can exist in
different LoD, the validity polygon of a component (extent) is used. This polygon defines the
scope in which the component is valid. A grid with three components is shown in Figure 15.
It depicts a coarse raster containing two high-resolution TINs (TIN 1 and 2). The validity
polygon of the raster is represented by the blue line, while the validity polygons of the TINs
are bordered in green and red. In this case, the validity polygon of the raster (grid) has two
holes where the raster (grid) is not valid, although it does exist. Instead, the high-resolution

3D Geodatabase for CityGML 2016 43

TINs are used for the representation of the terrain in these regions. That means the validity
polygons of the TINs exactly fit the two holes in the validity polygon of the raster (grid).

Figure 15: A relief, consisting of three components and its validity polygons
(from: [Plimer et al., 2005])

In the simplest and most frequent case, the validity polygon of a grid corresponds exactly with
its Bounding box, i.e. the spatial extent of the grid.

2.2.4.6 Generic Objects and Attributes

The concept of generic objects and attributes has been introduced to facilitate the storage and
exchange of 3D objects, which are not covered by explicitly modelled classes within
CityGML or which requires additional attributes. These generic extensions are realised by the
class GenericCityObject and the data type genericAttribute (cf. Figure 16).

A GenericCityObject may have the attributes class, function, and usage are specified as
gml:CodeType. The class attribute allows an object classification within the thematic area
such as bridge, tunnel, pipe, power line, dam, or unknown. The function attribute describes to
which thematic area the GenericCityObject belongs (e.g. site, transportation, architecture,
energy supply, water supply, unknown etc.). The attribute usage can be used, if the object's
usage differs from its function. Each CityObject and all thematic subclasses can have an
arbitrary number of genericAttributes. Data types may be String, Integer, Double (floating
point number), URI (Unified Resource Identifier), Date, and gml:MeasureType. The attribute
type is defined by the selection of the particular subclass of genericAttribute (stringAttribute,
intAttribute etc.). In addition, generic attributes can be grouped using the genericAttributeSet
class which is derived from genericAttribute and thus is also realized as generic attribute. Its
value is the set of contained generic attributes.

44 3D Geodatabase for CityGML 2016

Figure 16: Generic CityObject model

The geometry of a GenericCityObject can either be an explicit GML3 geometry or an
ImplicitGeometry. In the case of an explicit geometry, the object can have only one geometry
for each LoD, which may be an arbitrary 3D GML geometry object (class Geometry, which
is the base class of all GML geometries, lodXGeometry, X in 0...4). Absolute coordinates
according to the reference system of the city model must be given for the explicit geometry.
In the case of an ImplicitGeometry, a reference point (anchor point) of the object and
optionally a transformation matrix must be given. In order to compute the actual location of
the object, the transformation of the local coordinates into the reference system of the city
model must be processed and the anchor point coordinates must be added. The shape of an
ImplicitGeometry can be given as an external resource with a proprietary format, e.g. a
VRML or DXF file from a local file system or an external web service. Alternatively, the
shape can be specified as a 3D GML3 geometry with local Cartesian coordinates using the
property relativeGeometry.

In order to specify the exact intersection of the DTM with the 3D geometry of a
GenericCityObject, the latter can have TerrainintersectionCurves for every LoD. This is
important for 3D visualization but also for certain applications like driving simulators. For
example, if a city wall (e.g., the Great Wall of China) should be represented as a
GenericCityObject, a smooth transition between the DTM and the road on the city wall would
have to be ensured (in order to avoid unrealistic bumps).

3D Geodatabase for CityGML 2016 45

2.2.4.7 LandUse Model

LandUse objects describe areas of the earth’s surface dedicated to a specific land use. They
can be employed to represent parcels in 3D. Figure 17 shows the UML diagram of land use
objects.

Every LandUse object may have the attributes class (e.g. settlement area, industrial area,
farmland etc.), function (purpose, e.g. cornfield), and usage which can be used, if the way the
object is actually used differs from the function. Since the attributes usage and function may
be used multiple times, storing them in only one string requires a single white space as unique
separatorRelational database schema.

Figure 17: Landuse model

The LandUse object is defined for all LoD 0-4 and may have different geometries for each
LoD. The surface geometry of a LandUse object is required to have 3D coordinate values. It
must be a GML3 MultiSurface, which might be assigned appearance properties like material
(X3DMaterial) and texture (_AbstractTexture and its subclasses).

2.2.4.8 Transportation Model

The transportation model of CityGML is a multi-functional, multi-scale model focusing on
thematic and functional as well as geometrical/topological aspects. Transportation features are
represented as a linear network in LoDO0. Starting from LoD1, all transportation features are
geometrically described by 3D surfaces.

The main class is TransportationComplex (cf. Figure 19) which represents, for example, a
road, a track, a railway, or a square. It is composed of the parts TrafficArea and
AuxiliaryTrafficArea. Figure 18 depicts an example for a LoD2 TransportationComplex
configuration within a virtual 3D city model. The Road consists of several TrafficAreas for
the sidewalks, road lanes, parking lots, and of AuxiliaryTrafficAreas below the raised flower
beds.

46 3D Geodatabase for CityGML 2016

Figure 18: LoD2 representation of a transportation complex
(from: [Groger et al., 2008])

The road itself is represented as a TransportationComplex, which is further subdivided into
TrafficAreas and AuxiliaryTrafficAreas. The TrafficAreas are those elements, which are
important in terms of traffic usage, like car driving lanes, pedestrian zones and cycle lanes.

The AuxiliaryTrafficAreas are describing further elements of the road, like kerbstones, middle
lanes, and green areas.

Figure 19: UML model for transportation complex

TransportationComplex objects can be thematically differentiated using the subclasses Track,
Road, Railway, and Square. Every TransportationComplex has the attributes class, function
and wusage, referencing to the external code lists. The attribute class describes the
classification of the object. The attribute function describes the purpose of the object like, for

example national motorway, country road, or airport, while the attribute usage can be used, if
the actual usage differs from the function.

3D Geodatabase for CityGML 2016 47

In addition, both TrafficArea and AuxiliaryTrafficArea may have the attributes class, function,
usage, and surfaceMaterial. The attribute class describe the classification of the object. For
TrafficArea, the attribute function describes whether the object is a car driving lane, a
pedestrian zone, or a cycle lane, while the usage attribute indicates which modes of
transportation can use it (e.g. pedestrian, car, tram, roller skates). The attribute
surfaceMaterial specifies the type of pavement and may also be used for
AuxiliaryTrafficAreas (e.g. asphalt, concrete, gravel, soil, rail, grass etc.). The function
attribute of the AuxiliaryTrafficArea defines, among others, kerbstones, middle lanes, or green
areas. The possible values are specified in external code lists.

TransportationComplex is a subclass of _TransportationObject and of the root class
_CityObject. The geometrical representation of the TransportationComplex varies through the
different levels of detail. In the coarsest LoDO, the transportation complexes are modelled by
line objects establishing a linear network. Starting from LoDl1, a TransportationComplex
provides an explicit surface geometry, reflecting the actual shape of the object, not just its
centreline. In LoD2 to LoD4, it is further subdivided thematically into TrafficAreas, which are
used by transportation, such as cars, trains, public transport, airplanes, bicycles, or pedestrians
and in AuxiliaryTrafficAreas, which are of minor importance for transportation purposes, for
example road markings, green spaces or flower tubs.

2.2.4.9 Tunnel Model

The tunnel model is closely related to the building model. It supports the representation of
thematic and spatial aspects of tunnels and tunnel parts in four levels of detail, LODI to
LOD4. The UML diagram of the tunnel model is shown in Figure 21. The pivotal class of the
model is _AbstractTunnel, which is a subclass of the thematic class _Site (and transitively of
the root class CityObject). AbstractTunnel is specialized either to a Tunnel or to a
TunnelPart. Since an AbstractTunnel consists of TunnelParts, which again are
_AbstractTunnels, an aggregation hierarchy of arbitrary depth may be realized. Both classes
Tunnel and TunnelPart inherit the attributes of _AbstractTunnel: the class of the tunnel, the
function, the usage, the year of construction and the year of demolition. In contrast to
_AbstractBuilding, Address features cannot be assigned to _AbstractTunnel.

48 3D Geodatabase for CityGML 2016

Figure 20: Example of a tunnel modelled with two tunnel parts

The geometric representation and semantic structure of an _AbstractTunnel is shown in
Figure 21. The model is successively refined from LODI1 to LOD4. Therefore, not all
components of a tunnel model are represented equally in each LOD and not all aggregation
levels are allowed in each LOD. An object can be represented simultaneously in different
LODs by providing distinct geometries for the corresponding LODs.

3D Geodatabase for CityGML 2016 49

Figure 21: UML diagram of tunnel model

Similar to the building and bridge models (cf. chapters 2.2.4.2 and 2.2.4.3), only the outer
shell of a tunnel is represented in LOD1 — 3, which is composed of the tunnel’s boundary
surfaces to the surrounding earth, water, or outdoor air. The interior of a tunnel may only be
modelled in LODA4.

In LODI, a tunnel model consists of a geometric representation of the tunnel volume.
Optionally, a MultiCurve representing the TerrainintersectionCurve can be specified. The
geometric representation is refined in LOD2 by additional MultiSurface and MultiCurve
geometries. In LOD2 and higher LODs the outer structure of a tunnel can also be
differentiated semantically by the classes BoundarySurface and Tumnnellnstallation. A
boundary surface is a part of the tunnel’s exterior shell with a special function like wall

50 3D Geodatabase for CityGML 2016

(WallSurface), roof (RoofSurface), ground plate (GroundSurface), outer floor
(OuterFloorSurface), outer ceiling (OuterCeilingSurface) or ClosureSurface (see Figure 22).
The Tunnellnstallation class is used for tunnel elements like outer stairs, strongly affecting
the outer appearance of a tunnel. A Tunnellnstallation may have the attributes class, function
and usage.

gurface gurface
2 AN

q\e

by
&
£

Oy,

@
&
§
2
L

® urface
! o\\5

| "f@r,'o
s,

Figure 22: Different BoundarySurfaces of a tunnel

In LOD3, the openings in _BoundarySurface objects (doors and windows) can be represented
as thematic objects. In LOD4, the highest level of resolution, also the interior of a tunnel,
composed of several hollow spaces, is represented in the tunnel model by the class
HollowSpace. This enlargement allows a virtual accessibility of tunnels, e.g. for driving
through a tunnel, for simulating disaster management or for presenting the light illumination
within a tunnel. The aggregation of hollow spaces according to arbitrary, user defined criteria
(e.g. for defining the hollow spaces corresponding to horizontal or vertical sections) is
achieved by employing the general grouping concept provided by CityGML (cf. chapter
2.2.4.1). Interior installations of a tunnel, i.e. objects within a tunnel which (in contrast to
furniture) cannot be moved, are represen