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Abstract. Virtual 3D city models are becoming increasingly complex with 
respect to their spatial and thematic structures. CityGML is an OGC stan-
dard to represent and exchange city models in an interoperable way. As 
CityGML datasets may become very large and may contain deeply struc-
tured objects, the efficient storage and input/output of CityGML data re-
quires both carefully optimized database schemas and data access tools. In 
this paper a 3D geo database for CityGML is presented. It is shown how the 
CityGML application schema is mapped to a relational schema in an opti-
mized way. Then, a concept for the parallelized handling of (City)GML files 
using multithreading and the implementation of an import and export tool is 
explained in detail. Finally, the results from a first performance evaluation 
are given. 
 
Keywords: CityGML, 3D city model, 3D spatial database, database import 
and export, JAXB, GML processing 

1   Introduction 

Like many cities in Germany, Berlin is currently establishing a virtual 3D city 
model. More and more applications require additional height information and ob-
ject structuring in vertical direction – just think of urban and landscape modelling, 
architectural design, tourism, 3D cadastre, environmental simulations, radio net-
work planning, disaster management, or navigation. In order to assess the compre-
hensive 3D geoinformation for a city like Berlin, an appropriate data management 
component has to be built. Here, data may be collected, compared, adapted, up-
dated, and exchanged. The data is used for urban studies, planning variants, calcu-
lation of intervisibility, impacts of vegetation alterations, and semantic data explo-
rations. A necessary precondition is the existence of a standardised data model, 
ensuring consistent and interoperable data structuring. 

CityGML [9] is an international standard for the representation and exchange of 
3D city and landscape models issued by the Open Geospatial Consortium (OGC). 
The common information model behind CityGML defines classes and relations for 
the most relevant topographic objects in cities and regional models with respect to 
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their geometrical, topological, semantic and appearance properties. By covering 
thematic information and structures, CityGML complements 3D graphics formats 
like KML and X3D/VRML. CityGML is implemented as an application schema 
for the Geography Markup Language (GML) 3.1.1 [3] of the OGC and the ISO 
TC211.  

Based on CityGML, a 3D geo database for the official Berlin 3D city model 
was established. The main development objective was to achieve both the efficient 
storage and fast processing of CityGML. For this reason, the CityGML data model 
was mapped to a compact relational database schema. Moreover, an import/export 
tool was realised to facilitate the high-performance processing of CityGML and 
GML structures. Both aspects are considered integral parts of the 3D geo data 
management in Berlin. In this paper, we therefore address the modelling and data-
base design of the Berlin 3D geo database as well as the software engineering as-
pects of the import/export tool. 

2   A 3D geo database for Berlin 

The 3D geo database has been realised as an Oracle 10G R2 Spatial relational da-
tabase schema. In the first project phase, the Institute of Geodesy and Geoinforma-
tion, University of Bonn, built a first version that was confined to a subset of 
CityGML [1]. In the second phase, we now have redesigned the existing database 
schema to fully comply with CityGML 1.0.0. For this upgrade, additional support 
of interior building structures, the new appearance model and the full set of 
CityGML’s thematic modules is provided. 

In detail, the database implements the following key features of CityGML: 
• Complex thematic modelling  

The description of thematic features includes attributes, relations, and nested 
aggregation hierarchies (part-whole-relations) between features. Since on the 
spatial level geometry objects are assigned to features, both a semantic and a 
geometrical aggregation hierarchy can be employed. The rich semantic infor-
mation can be used for thematic queries, analyses, or simulations.  

• Five different Levels of Detail (LODs) 
Following the idea of multi-representation, every geo object (including DTMs 
and aerial photographs) can be stored in five different LODs. With increasing 
LOD, objects not only obtain a more precise and finer geometry, but do also 
gain in thematic refinement. 

• Appearance data 
In addition to semantic information and geometry, features can have appear-
ances, i.e., information about the observable properties of a feature’s surface. 
Appearances can represent textures and materials, but are not restricted to vis-
ual properties. In fact, appearances can transport any surface based theme, 
such as infrared radiation, noise pollution, etc.  

• Complex digital terrain models (DTMs) 
DTMs may be represented in four different ways in the 3D geo database: by 
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regular grids, triangulated irregular networks (TINs), 3D mass points and 3D 
break lines. For each LOD a complex relief can be aggregated from any num-
ber of DTM components of different types. For example, 3D mass points and 
break lines can be used together to form complex terrain models. 

• Representation of generic and prototypical 3D objects 
Prototypical objects are used for memory-efficient management of objects that 
frequently occur in the city model at different locations, e.g., pieces of street 
furniture like lanterns, road signs or benches. Each instance of a prototypical 
object may refer to a particular prototype object for each LOD. 

• Free, also recursive aggregation of geo objects 
Geo objects can be aggregated to groups according to user-defined criteria, 
e.g., to model a building complex consisting of individual building objects. 
The groups themselves represent geo objects which can be assigned names and 
additional classifying attributes. Groups again may contain other groups as 
members, resulting in aggregation hierarchies of arbitrary depth. 

• Flexible 3D geometries 
The geometry of 3D objects can be represented through the combination of 
surfaces and solids as well as any, also recursive, aggregation of these ele-
ments.  

The previous version of the database added two aspects to the underlying informa-
tion model which exceed the capabilities of CityGML [1]. These aspects have 
been retained in the upgraded database: 
• Management of large aerial photographs  

The database can handle aerial photographs of arbitrary size. Using Oracle 
10G R2 Spatial GeoRaster functionality, tiled, homogeneous photographs can 
be aggregated to one single image.  

• Version and history management 
The version and history management employs Oracle’s Workspace Manager. 
It is largely transparent to applications that work with the database. For ad-
ministration of planning areas and embodied planning alternatives, the tool 
"PlanningManager" was implemented and added to the 3D geo database. Fur-
thermore, procedures saved within the database (Stored Procedures) are pro-
vided, which allow for comfortable management of planning alternatives or 
versions [10]. 

The following sections explain the different steps of the database development. 
Important design decisions are pointed out. The three main steps are marked as 
(a), (b), and (c) in fig. 1: 
(a) Simplification of CityGML’s data model (section 3) 

In order to achieve a more compact database schema and improve query per-
formance, the complex data model was simplified at some critical points. 

(b) Derivation of the relational database schema (section 4) 
The simplified object-oriented data model has been mapped to relational ta-
bles. The number of tables was optimized in order to minimize the number of 
joins for typical queries. 
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(c) Creation of an import and export tool (section 5) 
The database administration tool allows processing of very large CityGML 
instance documents (>> 4 GB). Multiprocessor systems or multi-core CPUs 
are leveraged through a multithreaded architecture.  
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Fig. 1. Tasks in the development of Berlin’s city geo database: 
           (a) Simplification of CityGML’s data model, 
           (b) Derivation of the relational database schema, 
           (c) Creation of an import and export tool for CityGML instance documents. 

3   Simplification of CityGML’s data model 

In order to cope with arbitrary CityGML datasets, the 3D geo database has to 
cover all modelling aspects of CityGML 1.0.0 [9]. However, CityGML uses con-
cepts which are seen as quite complex by some users and software implementors. 
Complexity is found on different levels: 
• CityGML comprises different thematic models to represent the topographic 

objects in cities and regional models. These models are different in structure, 
e.g., regarding relations and aggregation hierarchies between features, and spa-
tial properties of features. Consequently, there is no simple ‘mechanic’ way to 
create a standardized relational model adhering to each thematic component. 
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• On the level of single thematic model components we have to face different 
relations between objects, allowing for modelling in various levels of complex-
ity. First, the thematic model of CityGML is based on hierarchical decomposi-
tion of geo objects. E.g., a building may be decomposed into building parts, 
rooms, walls, windows, and doors, etc. Second, some cyclic relations exist, re-
sulting in nested object structures of arbitrary depth. E.g., building parts may 
be recursively decomposed into nested building parts. Another prominent ex-
ample is the “generalizesTo” relation for CityObjects which maintains links 
between corresponding objects in different LOD. Third, multifaceted aggrega-
tions are included between thematic classes and their spatial properties. For 
one object, several geometric representations may be provided simultaneously. 

• On the geometry level, hierarchies comparable to those on the thematic side 
can be found. CityGML supports a subset of GML’s geometry model compris-
ing mainly polygonal geometries: Surfaces, CompositeSurfaces, MultiSur-
faces, Solids etc., all of which may be assigned appearance information. This 
subset facilitates various ways of composing spatial entities, including nesting 
of arbitrary depth.  

The ability to represent structured urban information is one of CityGML’s key fea-
tures. However, when it comes to data collection at a large scale (e.g., for a big 
city), some simplifications should be considered to enhance performance of data-
base access. For Berlin, a simplified data model has been created and then used as 
basis for the derivation of the actual database structure. In the following, modifica-
tions are listed and discussed in detail: 
• Simplified treatment of recursions 

Recursive database queries are very time consuming, especially if the recur-
sion depth is unknown. In order to guarantee high performance, each database 
object stores both its direct parent element and its root element. The root ele-
ment is essential for typical high level queries. E.g., all parts of a building can 
be obtained by simply accessing those elements storing the building’s ID as 
root ID. This operation can be executed on thematic as well as geometry side. 
The explicit storage of parent elements allows for reconstruction of the whole 
recursion tree without information loss. 

• Alternative design of GML geometry classes  
In CityGML, spatial properties of features are represented by objects of 
GML3’s geometry model, consisting of primitives, which may be combined to 
form complexes, composite geometries, and aggregates. The usage for 
CityGML is restricted to a subset of the GML3 geometry package, dealing 
with the representation of polygonal geometries. This may be Points, Line-
Strings, Polygons, Solids and all valid geometry collections such as Compo-
siteSurfaces or MultiSolids. For topology and appearance information, 
CityGML requires identification of geometry parts, even if contained in ge-
ometry collections. Spatial databases usually provide data types for the afore-
mentioned geometry types. In fact, only those data types enable spatial queries 
within these databases. Unfortunately, database implementations of geometry 
collections such as MultiSurface do not allow for naming and referencing of 
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the internal geometry parts. This hinders their use for CityGML.  
The solution is a simplified geometry model for 2D and 3D geometries as 
shown in fig. 2.  

<<Geometry>>
_BRepGeometry

<<Geometry>>
Polygon

+isSolid : boolean [1]
+isComposite : boolean [1]
+isTriangulated : boolean [1]

+geometry : Polygon [1]

<<Geometry>>
BRepAggregate

0..1

1..*

bRepMember <<Geometry>>
_BRepGeometry

<<Geometry>>
Polygon

+isSolid : boolean [1]
+isComposite : boolean [1]
+isTriangulated : boolean [1]

+geometry : Polygon [1]

<<Geometry>>
BRepAggregate

0..1

1..*

bRepMember

 
Fig. 2. Simplified modelling of polygon-based GML geometry classes. 

The abstract root class is called _BRepGeometry and acts as basis for all sur-
face-based geometry objects within the city database. It specialises to two con-
crete classes Polygon and BRepAggregate which hold explicit coordinates or 
information on aggregation hierarchy respectively. All surfaces are split into 
individual polygons such that each is identifiable. Polygon uses a native spatial 
data type (Oracle SDO_GEOMETRY of type Polygon) to enable spatial que-
ries. Polygons are then aggregated using BRepAggregate, again with each be-
ing identifiable. Various flags denote the type of aggregation: isTriangulated 
denotes a TriangulatedSurface, isSolid distinguishes between surface and 
solid, and isComposite defines whether this is an aggregate (e.g., MultiSolid) 
or a composition (e.g., CompositeSolid). Geometric aggregates are arbitrary 
aggregations of geometry elements which are not assumed to fulfill specific 
topological constraints. In contrast, composite geometries represent a set of 
topologically connected primitive geometric objects of same dimension, whose 
interiors are disjoint. The geometric composite itself must be isomorphic to a 
primitive geometric object [11]. The recursive relation bRepMember enables 
nesting of geometry collections. 

• Project specific classes and class attributes 
The city database of Berlin must also store orthophotos, metadata, and version 
controls. Since in CityGML this information is not represented, appropriate 
classes and class attributes have been added. 

• Data type customisation 
Some of the data types specified in CityGML were substituted by simpler ones 
to enable a more efficient representation within the database, e.g. code lists and 
colour vectors were replaced by strings and non-polygonal GML geometry 
types were mapped to their Oracle-specific data type SDO_GEOMETRY. 

• Reducing multiplicities of class attributes 
Simple attributes with an unbounded number of occurrences (*) are repre-
sented in the database by either an array containing a predefined maximum 
number of elements or by a data type permitting storage of arbitrary values in 



Making interoperability persistent: A 3D geo database based on CityGML      7 

one object (e.g., several values may be represented by using the data type 
String with a predefined separator to detach elements from each other). Only 
then such attributes can be included into a single database column. 

• Cardinalities and types of relations 
To represent relations of cardinality n:m in a database, an additional table is 
needed, which contains pairs of linked object IDs. With the simplification to 
1:n or n:1 relations this additional table can be avoided. Therefore, all relations 
defined in CityGML were tested for more restrictive interpretation. One result 
was changing the aggregation between rooms and furniture to a composition, 
since furniture is always bound to a specific room.  

4   Derivation of the relational database schema 

GML is inherently object oriented. The GML application schema of CityGML 
contains specialization and aggregation hierarchies, nested objects, and complex 
attributes. In order to map these structures to a relational schema different rules 
have been proposed and discussed in the past. For example, the mapping of spe-
cialisation hierarchies onto database tables may follow one of three different map-
ping methods [13]. Fig. 3 illustrates these methods for the mapping of our simpli-
fied geometry representation, introduced in fig. 2 (the bRepMember relation is 
omitted here). 
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Fig. 3. Mapping a class hierarchy to database tables: (a) mapping all classes to a single ta-
ble; (b) mapping non-abstract classes to their own tables; (c) mapping each class to a single 
table. 

In order to create space-efficient representations, systems that are capable of 
automatically deriving relational schemas from GML application schemas typi-
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cally employ variants (c) or (b). For example, the two commercial systems GO 
Loader [8, 12] from Snowflake Software and SupportGIS [4] from CPA Geo-
Information follow this line.  

For the Berlin 3D geodatabase the mapping was carried out manually allowing 
careful optimisations. For each CityGML class the mapping alternative was cho-
sen individually. The criteria were the expected number of tuples within the tables, 
the number of joins to reconstruct the CityGML objects, and the overall complex-
ity of the most important queries (with respect to the CityGML object structure). 
Emgård and Zlatanova [6] provide a more detailed discussion about the mapping 
of a 3D information model to a relational database. They outline and evaluate two 
alternative mappings that are optimised for spatial or semantic queries respec-
tively. 

Central CityGML classes were identified that require individual tables. They 
include CityObject, CityModel, SurfaceData, and major thematic classes such as 
PlantCover or AbstractBuilding. Remaining classes have been merged into these 
tables either due to similar structure (e.g., BuildingInstallation and IntBuildingIn-
stallation) or due to inheritance (e.g., Road, Track, Railway, and Square into 
TransportationComplex). See [9] for CityGML class diagrams.  

The overall root class Feature has no associated table. Instead, its attributes 
GMLID, GML_NAME, and NAME_CODESPACE have been moved to direct 
subclasses of CityObject. In addition, GMLID has been equipped with an attribute 
GMLID_CODESPACE. It contains the full path of the originating CityGML in-
stance document or a user-defined value. The codespace is required since 
GMLIDs are to be unique in single instance documents only. Only the combina-
tion of ID and codespace ensures uniqueness within the database. For the class 
CityObject, the attributes GML_NAME and NAME_CODESPACE have been 
pushed down an additional level along the inheritance hierarchy. This is due to 
typical database queries, such as searching for a specific building named “Bran-
denburger Tor”. Storing the attributes directly in table CityObject would require 
unnecessary table joins to identify affected buildings. 

Finally, the attribute CLASS_ID has been added to CityObject. It helps imple-
menting queries starting in table CityObject, such as by GMLID, by spatial extent 
(e.g., a bounding box), or through meta information. To facilitate further database 
scanning, the attribute CLASS_ID provides information on the class affiliation of 
the identified entries in CityObject and enables direct access to relevant tables.  

The implementation of geometry in the 3D geodatabase (fig. 4) follows the first 
approach (fig. 3 (a)). By avoiding multiple tables the number of joins is reduced, 
resulting in higher database performance. As explained in section 3 (Simplified 
treatment of recursions), the bRepMember relation (fig. 2) was reduced to two at-
tributes PARENT_ID and ROOT_ID. Further explanations can be found in the da-
tabase documentation [2]. 
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Fig. 4. Implementation of 3D BRep geometry in the 3D geo database. This table stores eve-
rything from single Polygons over MultiSurfaces, CompositeSurfaces, TriangulatedSur-
faces, up to Solids, MultiSolids, and CompositeSolids. By only using Oracle’s 
SDO_GEOMETRY type for single polygons, every polygon is a tuple with an ID value and 
may be referenced e.g. from appearance information. 

5   Creation of an import and export tool 

In this section, we introduce a software tool for the import and export of CityGML 
datasets for the 3D geo database. In addition to the relational geo database 
schema, the tool is considered an integral part of an overall solution for the effi-
cient processing, storage, and retrieval of 3D city models. 

In this context, the processing of CityGML and GML structures has to face 
three main challenges:  

1. GML provides a powerful and expressive data model and XML is verbose. This 
results in voluminous encodings of spatial data. Thus, instance documents 
quickly grow in file size and may exceed main memory limits (e.g., one million 
buildings in LOD1 require about 7GB of disk space).  

2. Objects may be arbitrarily nested leading to complex data structures which 
have to be efficiently parsed and mapped to according database tables.  

3. Property elements may reference their value using XLinks pointing to remote 
objects within the same or an external document. These Xlinks have to be re-
solved in order to correctly represent objects within the geo database. 

The import/export tool addresses these challenges by employing strategies for the 
handling of CityGML instance documents of arbitrary file size and the resolving 
of XLinks. Furthermore, high-performance data processing is achieved based on a 
multithreaded software architecture. Fig. 5 gives an overview of the import and 
export tool’s implementation. It is composed of three parts. In the middle, the 
process of binding the underlying CityGML XML schema definition to a Java ob-
ject model is illustrated, further explained in section 5.1. The top and bottom parts 
show the process of data import and export, addressed in sections 5.2 and 5.3.  
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Fig. 5. Import and export tool: Overview of the overall data flow. 

Special attention is directed to the management of object IDs, because only a 
systematic and careful usage of a worldwide unique identifier guarantees consis-
tent updating of geo objects stored in the database. As GMLIDs are optional and 
unique only within one dataset, all imported objects are either assigned a new 
worldwide unique identifier (UUIDs) or only objects with missing GMLIDs are 
assigned such UUIDs. In both cases, the attribute GMLID_CODESPACE de-
scribed in section 4 is added to every object (including surface-based geometries). 

5.1 Software design of the import/export tool 

The import/export tool is implemented as a Java application. It employs a chunk 
processing strategy for XML documents in order to handle instance documents of 
arbitrary file size. Furthermore, the software design is entirely based on multi-
threading allowing for high-performance and concurrent data processing. 

Support for CityGML instance documents of arbitrary file size 

The processing of large XML documents is realized through a stream-based XML 
object binding. This approach utilizes two existing Java frameworks for reading 
and writing verbose XML files. On the one hand, the Java Architecture for XML 
Binding (JAXB) is employed to facilitate an object-oriented view of XML data. 
On the other hand, the Simple API for XML (SAX) is used for the stream-based 
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and event-driven parsing of XML documents. By combining both frameworks, the 
benefits of each API can be leveraged while limiting their downsides. 

The JAXB framework provides a convenient and easy-to-use way to validate 
and process XML content using Java objects by binding the underlying XML 
schema definition to a Java object model. It enables storing and retrieving of data 
in memory in any XML format without the need to implement a specific set of 
XML loading and saving routines. Moreover, the generated object model captures 
the structure of XML better than general-purpose APIs like the XML Document 
Object Model (DOM) or SAX. Like most object-binding APIs, JAXB requires the 
entire XML stream or file to be present in main memory before data processing 
can begin. Consequently, memory consumption limits the maximum XML docu-
ment size.  

In contrast, streaming parsers such as SAX, allow for a serial access to XML 
documents. Each element of the document is passed to the application in sequence 
of its occurrence via user-defined callback methods. Accordingly, the memory 
footprint of this event-driven approach is mainly based on the data stored in a sin-
gle XML element, and thus is always only a small fraction of the size of the entire 
document. However, stream-based parsing is unidirectional, i.e., previously parsed 
data cannot be re-read. This hinders a simple and object-oriented handling of 
complex XML content. 

In order to provide both an object-oriented view of XML data and a solution to 
the data overload problem, the import/export tool implements a two-stage ap-
proach: 1) XML documents are parsed using a SAX streaming parser which splits 
the document into single chunks of manageable size. For each chunk, the occur-
ring SAX events are recorded using a memory buffer. 2) The buffer contents are 
individually mapped to Java objects for data processing using JAXB. For writing 
XML documents, the inverse process is applied. 

By this means, memory usage is no longer dependent on the document size, but 
only relates to the amount of data kept in the memory buffer. For CityGML in-
stance documents, reasonable XML chunks are embraced by <cityObjectMem-
ber> tags which represent the top-level features within a CityGML model. 

In anticipation of future changes, a thin access wrapper is added to the JAXB 
binding classes. This wrapper abstracts from the underlying binding classes to en-
able parallel support of CityGML version 0.4.0 and 1.0.0. 

Concurrency of data processing  

The overall architecture of the import/export tool is based on multithreading, i.e., 
concurrent execution of multiple interacting computational tasks. Generally, each 
task within the import/export process of CityGML data is carried out by separate 
threads. The decoupling of compute bound from I/O bound tasks and their parallel 
non-blocking processing usually leads to an increase of the overall application 
performance. In a multi-core environment, threads can even be executed simulta-
neously on different CPUs.  

However, a common and simplistic thread-per-task approach faces disadvan-
tages for a large number of active threads such as thread life-cycle overhead and 
resource thrashing. For this reason, the import/export application reuses threads 
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for multiple but homogenous tasks by applying a pooled threads model. Thread-
creation overhead is spread over many tasks, and because a thread already exists 
within the pool when a task is requested, the delay introduced by thread creation is 
eliminated.  

The thread pool model is implemented as a work queue combined with a fixed 
group of associated worker threads (fig. 6). The work queue is realized as a block-
ing queue which is a common pattern in multithreaded programming: one thread 
produces objects, i.e., single tasks to be performed, and places them on a queue for 
consumption by other threads, which remove them from the queue. The blocking 
queue implementation is following the producer-consumer design pattern [7] to 
avoid deadlocks of the associated worker threads. 

Queue

Thread Pool

worker

worker

worker

Thread Pool

Queue

worker

asynchronoussynchronous asynchronoussynchronous

 
Fig. 6. Thread pools are implemented as work queues with fixed groups of associated 
worker threads. 

Single thread pools can be easily combined to entire process chains. The worker 
threads within a thread pool concurrently process the tasks placed on their associ-
ated work queue, and pass their processing results to the work queue of the subse-
quent thread pool. This allows for the decoupling of process steps in a modular 
way, allowing for easy extension by further process steps. Inter-process communi-
cation between the process steps is realized by an event-dispatcher thread which is 
implemented as single-worker pool allowing for asynchronous and synchronous 
message transfer according to the publisher-subscriber design pattern [7]. 

The optimal number of worker threads within a thread pool mainly depends on 
the number of processors available, the nature of the task, e.g., I/O bound or com-
pute bound, and the cost of thread context switching. The import/export tool sup-
ports user-defined threshold values and a management unit per thread pool for 
autonomous adaptation based on the overall workload. Furthermore, the queue 
size is a determining factor for memory consumption, and thus can be adjusted to 
specific system configurations. 

5.2 The import process  

The process of importing CityGML datasets into the database is illustrated in fig. 
7. The workflow is implemented by chaining thread pools which cover single 
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steps of the import process. It comprises thread pools for the chunk-processing of 
the input XML document (parser thread pool), the conversion of single chunks to 
JAXB objects representing CityGML top-level features (converter thread pool), 
and the data processing of these features (importer and XLink thread pools). The 
associated work queues are also shown in fig. 7. 
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Fig. 7. Import Tool (phase 1) – Detailed workflow from input CityGML instance docu-
ments to database storage. XLink references are separately stored in temporary tables to en-
able XLink resolving in phase 2. 

The first two steps of the process chain, i.e., chunk processing of the input data 
and unmarshalling of CityGML top-level features, have already been discussed in 
section 5.1. By analyzing the resulting JAXB objects, the subsequent importer 
thread shown in fig. 7 derives the final SQL statements using the import function-
ality, which maps the objects to corresponding tables of the relational database 
schema (section 4). This step can be customized by user-defined import filters. For 
example, the import may be restricted to a given set of feature types, e.g., only 
CityGML buildings, or to features located within a geographic bounding box. Fil-
tered objects can be immediately skipped and released from memory.  

In order to optimize database response times, SQL statements are precompiled 
and stored in corresponding Java objects by the importer thread. The precompiled 
objects can then be used to efficiently execute the same statement multiple times 
with varying data. Furthermore, SQL statements are collected and only forwarded 
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to the database if a certain amount of statements has been reached (bulk process-
ing). This allows for an efficient batch processing on the database side. The opti-
mal number of statements within a batch depends on the complexity of the im-
ported CityGML dataset, and thus can be customized.   

The multithreaded design of the import tool allows for the concurrent execution 
of all process steps. For example, the parsing of the XML document is never 
blocked by threads waiting for database response, and multiple JAXB objects can 
be processed simultaneously. However, the chunk-processing of the input data 
also introduces a further level of complexity. In CityGML instance documents, 
properties of features like relations to other features or geometry objects may be 
denoted using the XLink concept of GML3. Thus, instead of having the XML 
content inline within the feature element, the content is given by reference to a 
remote object identified by its GMLID. Since backward references within the 
same XML document are allowed, a one-stage approach for resolving of XLinks 
would require the whole document to be present in memory. 

To solve this problem, the import tool employs a two-phase strategy. In the first 
run (fig. 7), features are written to the database neglecting references to remote 
objects. However, if a feature contains an XLink, an additional entry is written to 
a temporary table by a separate XLink thread. This entry mainly contains the ref-
erencing feature and the referenced GMLID. Furthermore, the import tool keeps 
track of every previously encountered GMLID and its corresponding object repre-
sentation in database. In a consecutive run, only these temporary tables are revis-
ited and queried. Since the entire XML document has been processed at this point 
in time, valid references can be resolved and processed accordingly. The second 
phase of the import process is depicted in fig. 8.  

By means of this two-phase import process, the advantages of chunk-
processing can be kept and a correct storage of CityGML instance documents 
within the database can be ensured. 
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Fig. 8. Import Tool (phase 2) – After phase 1 is completed, the information stored in the 
temporary tables is queried (splitter thread pool) to resolve XLink references to remote ob-
jects (resolver thread pool).  
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5.3 The export process 

The workflow for exporting CityGML datasets from the database is shown in fig. 
9. As for the import, the workflow is realized as a process chain combining several 
thread pools, each of which covers a separate process step.  

The first step of this workflow is to query the database according to user-
defined criteria. These export filters are identically defined as the import filters, 
e.g., allowing for spatial queries of features within a given geographic bounding 
box. Spatial queries are performed within the database itself using the spatial in-
dexing capabilities of Oracle 10G R2 Spatial. Furthermore, the queries are only 
executed on a single database table in the first run, which only holds general in-
formation for all contained features. Thus, the queries can be rapidly processed by 
the database and returned to the export tool.  
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Fig. 9. Export Tool – Detailed workflow from database filtering to the export of CityGML 
instance documents. 

As soon as the first query results are returned, the splitter thread places them on 
the work queue of the subsequent exporter thread. By this means, the worker 
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threads of the export pool already start to reconstruct the corresponding CityGML 
feature objects while the splitter thread still processes the initial database response.  

Depending on the type of feature to be reconstructed, the exporter workers have 
to execute more complex database queries spanning several tables in order to re-
trieve the necessary feature data. The export functionality provides respective 
code for each feature type. At this stage, most of the data processing is done by the 
database server due to efficient use of SQL join statements. Furthermore, if a sin-
gle worker thread is waiting for database response, it does not block the other 
threads within the export pool. If all data has been received, it is mapped to corre-
sponding JAXB objects. Also the export tool keeps track of the feature’s GMLID 
in order to avoid duplicate output of objects and to use XLinks instead. The JAXB 
objects are marshalled to SAX events which are recorded by a temporary memory 
buffer. The buffered SAX events are placed on the queue of the subsequent thread 
pool. Afterwards, the export thread continues to work on the next feature. 

The last step of the export process, i.e., writing the entire feature data to a 
CityGML instance document, is carried out by an I/O writer thread. This thread 
takes the SAX event buffers from its work queue and translates them into XML 
elements. Again, these file-based processes are decoupled from all other steps of 
the process chain.   

5.4 Performance 

Currently, performance has not been measured thoroughly. However, initial tests 
exhibit good throughput in the following setting: 
• Database server: 2 x Intel Xeon Dual Core@3GHz, 6GB RAM, SCSI Raid 5 

Disk Array, Windows Server 2003 SP2, 100MBit LAN 
• Client running the import/export tool: Intel Core2 CPU 6600@2.4GHz, 2GB 

RAM, WindowsXP SP2, 100MBit LAN 
The database server was running a default Oracle 10G R2 Spatial installation 
without manual tunings or additional settings. All import tests have been per-
formed with spatial indexes disabled. Additionally, indexes on table rows contain-
ing VARCHAR2 values (e.g., GMLID, GMLID_CODESPACE) were switched 
off. Unless stated otherwise, Oracle’s table versioning was disabled. The perform-
ance measurements for the import of different CityGML instance documents are 
shown in tab. 1.  

Tab. 1. Performance measurements for the import of CityGML datasets using the devel-
oped import tool. Row headers are as follows: [1] File size, [2] Overall import time, [3] 
Top-level features per second (please note that these may contain nested features which are 
not counted here), [4] Workers per thread pool, [5] Imported top-level features / geometries 
/ texture images / Xlinks, [6] Versioning using Oracle Workspace Manager 

Dataset [1] [2] [3] [4] [5] [6] 
1 mio. LOD1  
buildings 

7.5GB 1:15h 228 4 1055951 / 11511040 
/ 0 / 0 

off 
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Dataset [1] [2] [3] [4] [5] [6] 
1 mio. LOD1  
buildings 

7.5GB 2:25h 121 1 1055951 / 11511040 
/ 0 / 0 

off 

209 complex LOD3 
objects 

40.1MB 17s 12 4 209 / 73823 / 0 / 0 off 

-“- 40.1MB 24s 9 1 209 / 73823 / 0 / 0 off 
-“- 40.1MB 3:20h 0.02 4 209 / 73823 / 0 / 0 on 
10927 fully textured 
LOD2 buildings 

163MB + 
57 MB 
textures 

25min 7 4 10927 / 434714 / 
43348 / 391006 

off 

-“- 163MB +  
57 MB 
textures 

42min 4 1 10927 / 434714 / 
43348 / 391006 

off 

-“- 
(w/o textures) 

163MB 
 

6:30 
min 

28 4 10927 / 434714 / 
0 / 391006 

off 

 
Corresponding export tests are illustrated in tab. 2. 

Tab. 2. Performance measurements for the export of CityGML datasets using the devel-
oped export tool. Row headers are as follows: [1] File size, [2] Overall export time, [3] 
Top-level features per second, [4] Worker per thread pool, [5] Exported top-level features / 
geometries / texture images / XLinks 

 [1] [2] [3] [4] [5] 
1 mio. LOD1  
buildings 

7.5GB 38min 455 10 1055951 / 11511040 / 
0 / 0 

-“- 7.5GB 1:57h 150 1 1055951 / 11511040 / 
0 / 0 

209 various and 
complex LOD3 ob-
jects 

40.1MB 7s 30 10 209 / 73823 / 0 / 0 

-“- 40.1MB 17s 12 1 209 / 73823 / 0 / 0 
10927 fully tex-
tured LOD2 build-
ings 

163MB
+  

57 MB 
textures 

4:20min 42 4 10927 / 434714 / 
43348 / 391006 

-“- 
(w/o textures) 

163MB
+  

57 MB 
textures 

2min 91 4 10927 / 434714 / 
43348 / 391006 

6   Conclusions and Future Work 

In this paper a relational 3D geo database for the storage of CityGML data was 
presented. Optimizations on the object model and its mapping to a relational 
schema were discussed. Furthermore, a concept for multithreaded processing of 
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large (City)GML files was proposed. The first performance evaluations showed 
that the usage of concurrent worker threads leads to significant speedups.  

The 3D geodatabase has been developed in the course of the project “Geo data 
management for the Berlin government – The official Berlin 3D city model” [5]. 
By relying on CityGML’s comprehensive data model, members of different com-
munities, such as city planners, architects, surveyors, etc. are provided with a da-
tabase for semantically rich city models. With the project close-out at the end of 
this year the entire software will be released as Open Source on [2].  

In the future, the database administration tool will be extended by data match-
ing functionality, i.e. buildings in the database that represent the same real world 
object will be detected and linked automatically. This allows for the exchange of 
thematic information attached to either of the buildings as well as automated up-
dating procedures. In case of equivalent geometries, one of the objects will be de-
leted to avoid database inconsistencies. 

Finally, there is room for performance optimisations. Important topics not yet 
covered are logical table and index partitions as well as their optimal distribution 
on physical volumes.  
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