
Making interoperability persistent: A 3D geo database
based on CityGML

Alexandra Stadler, Claus Nagel, Gerhard König, Thomas H. Kolbe

Technische Universität Berlin, Institute for Geodesy and Geoinformation Science,
Straße des 17. Juni 135, 10623 Berlin, Germany

{stadler | nagel | kolbe}@igg.tu-berlin.de, gerhard.koenig@tu-berlin.de

Abstract. Virtual 3D city models are becoming increasingly complex with
respect to their spatial and thematic structures. CityGML is an OGC stan-
dard to represent and exchange city models in an interoperable way. As
CityGML datasets may become very large and may contain deeply struc-
tured objects, the efficient storage and input/output of CityGML data re-
quires both carefully optimized database schemas and data access tools. In
this paper a 3D geo database for CityGML is presented. It is shown how the
CityGML application schema is mapped to a relational schema in an opti-
mized way. Then, a concept for the parallelized handling of (City)GML files
using multithreading and the implementation of an import and export tool is
explained in detail. Finally, the results from a first performance evaluation
are given.

Keywords: CityGML, 3D city model, 3D spatial database, database import
and export, JAXB, GML processing

1 Introduction

Like many cities in Germany, Berlin is currently establishing a virtual 3D city
model. More and more applications require additional height information and ob-
ject structuring in vertical direction – just think of urban and landscape modelling,
architectural design, tourism, 3D cadastre, environmental simulations, radio net-
work planning, disaster management, or navigation. In order to assess the compre-
hensive 3D geoinformation for a city like Berlin, an appropriate data management
component has to be built. Here, data may be collected, compared, adapted, up-
dated, and exchanged. The data is used for urban studies, planning variants, calcu-
lation of intervisibility, impacts of vegetation alterations, and semantic data explo-
rations. A necessary precondition is the existence of a standardised data model,
ensuring consistent and interoperable data structuring.

CityGML [9] is an international standard for the representation and exchange of
3D city and landscape models issued by the Open Geospatial Consortium (OGC).
The common information model behind CityGML defines classes and relations for
the most relevant topographic objects in cities and regional models with respect to

kolbe
Textfeld
This article appeared in: Lee, Jiyeong / Zlatanova, Sisi (Eds.): Proceedings of the 3rd International Workshop on
3D Geo-Information, Seoul, Korea. Lecture Notes in Geoinformation & Cartography, Springer Verlag, 2009

2 Alexandra Stadler, Claus Nagel, Gerhard König, Thomas H. Kolbe

their geometrical, topological, semantic and appearance properties. By covering
thematic information and structures, CityGML complements 3D graphics formats
like KML and X3D/VRML. CityGML is implemented as an application schema
for the Geography Markup Language (GML) 3.1.1 [3] of the OGC and the ISO
TC211.

Based on CityGML, a 3D geo database for the official Berlin 3D city model
was established. The main development objective was to achieve both the efficient
storage and fast processing of CityGML. For this reason, the CityGML data model
was mapped to a compact relational database schema. Moreover, an import/export
tool was realised to facilitate the high-performance processing of CityGML and
GML structures. Both aspects are considered integral parts of the 3D geo data
management in Berlin. In this paper, we therefore address the modelling and data-
base design of the Berlin 3D geo database as well as the software engineering as-
pects of the import/export tool.

2 A 3D geo database for Berlin

The 3D geo database has been realised as an Oracle 10G R2 Spatial relational da-
tabase schema. In the first project phase, the Institute of Geodesy and Geoinforma-
tion, University of Bonn, built a first version that was confined to a subset of
CityGML [1]. In the second phase, we now have redesigned the existing database
schema to fully comply with CityGML 1.0.0. For this upgrade, additional support
of interior building structures, the new appearance model and the full set of
CityGML’s thematic modules is provided.

In detail, the database implements the following key features of CityGML:
• Complex thematic modelling

The description of thematic features includes attributes, relations, and nested
aggregation hierarchies (part-whole-relations) between features. Since on the
spatial level geometry objects are assigned to features, both a semantic and a
geometrical aggregation hierarchy can be employed. The rich semantic infor-
mation can be used for thematic queries, analyses, or simulations.

• Five different Levels of Detail (LODs)
Following the idea of multi-representation, every geo object (including DTMs
and aerial photographs) can be stored in five different LODs. With increasing
LOD, objects not only obtain a more precise and finer geometry, but do also
gain in thematic refinement.

• Appearance data
In addition to semantic information and geometry, features can have appear-
ances, i.e., information about the observable properties of a feature’s surface.
Appearances can represent textures and materials, but are not restricted to vis-
ual properties. In fact, appearances can transport any surface based theme,
such as infrared radiation, noise pollution, etc.

• Complex digital terrain models (DTMs)
DTMs may be represented in four different ways in the 3D geo database: by

Making interoperability persistent: A 3D geo database based on CityGML 3

regular grids, triangulated irregular networks (TINs), 3D mass points and 3D
break lines. For each LOD a complex relief can be aggregated from any num-
ber of DTM components of different types. For example, 3D mass points and
break lines can be used together to form complex terrain models.

• Representation of generic and prototypical 3D objects
Prototypical objects are used for memory-efficient management of objects that
frequently occur in the city model at different locations, e.g., pieces of street
furniture like lanterns, road signs or benches. Each instance of a prototypical
object may refer to a particular prototype object for each LOD.

• Free, also recursive aggregation of geo objects
Geo objects can be aggregated to groups according to user-defined criteria,
e.g., to model a building complex consisting of individual building objects.
The groups themselves represent geo objects which can be assigned names and
additional classifying attributes. Groups again may contain other groups as
members, resulting in aggregation hierarchies of arbitrary depth.

• Flexible 3D geometries
The geometry of 3D objects can be represented through the combination of
surfaces and solids as well as any, also recursive, aggregation of these ele-
ments.

The previous version of the database added two aspects to the underlying informa-
tion model which exceed the capabilities of CityGML [1]. These aspects have
been retained in the upgraded database:
• Management of large aerial photographs

The database can handle aerial photographs of arbitrary size. Using Oracle
10G R2 Spatial GeoRaster functionality, tiled, homogeneous photographs can
be aggregated to one single image.

• Version and history management
The version and history management employs Oracle’s Workspace Manager.
It is largely transparent to applications that work with the database. For ad-
ministration of planning areas and embodied planning alternatives, the tool
"PlanningManager" was implemented and added to the 3D geo database. Fur-
thermore, procedures saved within the database (Stored Procedures) are pro-
vided, which allow for comfortable management of planning alternatives or
versions [10].

The following sections explain the different steps of the database development.
Important design decisions are pointed out. The three main steps are marked as
(a), (b), and (c) in fig. 1:
(a) Simplification of CityGML’s data model (section 3)

In order to achieve a more compact database schema and improve query per-
formance, the complex data model was simplified at some critical points.

(b) Derivation of the relational database schema (section 4)
The simplified object-oriented data model has been mapped to relational ta-
bles. The number of tables was optimized in order to minimize the number of
joins for typical queries.

4 Alexandra Stadler, Claus Nagel, Gerhard König, Thomas H. Kolbe

(c) Creation of an import and export tool (section 5)
The database administration tool allows processing of very large CityGML
instance documents (>> 4 GB). Multiprocessor systems or multi-core CPUs
are leveraged through a multithreaded architecture.

CityGML
Xsd Schema

<xs:complexType
name="CityModelType">

<xs:complexContent>
<xs:extension

...

UML Schema

Java
binding

(JAXB)

simplified
UML Schema

Schema
simplifi-
cation

Relational
Diagram

mapping
classes to

tables

Oracle
database

SQL DDL
statements

(JDeveloper)

Schema-derived
classes

public class CityModel {
… }

SQL
queries

(Imp/Export
Tool)

database
creation

import
data

export
data

b

a

c

Fig. 1. Tasks in the development of Berlin’s city geo database:
 (a) Simplification of CityGML’s data model,
 (b) Derivation of the relational database schema,
 (c) Creation of an import and export tool for CityGML instance documents.

3 Simplification of CityGML’s data model

In order to cope with arbitrary CityGML datasets, the 3D geo database has to
cover all modelling aspects of CityGML 1.0.0 [9]. However, CityGML uses con-
cepts which are seen as quite complex by some users and software implementors.
Complexity is found on different levels:
• CityGML comprises different thematic models to represent the topographic

objects in cities and regional models. These models are different in structure,
e.g., regarding relations and aggregation hierarchies between features, and spa-
tial properties of features. Consequently, there is no simple ‘mechanic’ way to
create a standardized relational model adhering to each thematic component.

Making interoperability persistent: A 3D geo database based on CityGML 5

• On the level of single thematic model components we have to face different
relations between objects, allowing for modelling in various levels of complex-
ity. First, the thematic model of CityGML is based on hierarchical decomposi-
tion of geo objects. E.g., a building may be decomposed into building parts,
rooms, walls, windows, and doors, etc. Second, some cyclic relations exist, re-
sulting in nested object structures of arbitrary depth. E.g., building parts may
be recursively decomposed into nested building parts. Another prominent ex-
ample is the “generalizesTo” relation for CityObjects which maintains links
between corresponding objects in different LOD. Third, multifaceted aggrega-
tions are included between thematic classes and their spatial properties. For
one object, several geometric representations may be provided simultaneously.

• On the geometry level, hierarchies comparable to those on the thematic side
can be found. CityGML supports a subset of GML’s geometry model compris-
ing mainly polygonal geometries: Surfaces, CompositeSurfaces, MultiSur-
faces, Solids etc., all of which may be assigned appearance information. This
subset facilitates various ways of composing spatial entities, including nesting
of arbitrary depth.

The ability to represent structured urban information is one of CityGML’s key fea-
tures. However, when it comes to data collection at a large scale (e.g., for a big
city), some simplifications should be considered to enhance performance of data-
base access. For Berlin, a simplified data model has been created and then used as
basis for the derivation of the actual database structure. In the following, modifica-
tions are listed and discussed in detail:
• Simplified treatment of recursions

Recursive database queries are very time consuming, especially if the recur-
sion depth is unknown. In order to guarantee high performance, each database
object stores both its direct parent element and its root element. The root ele-
ment is essential for typical high level queries. E.g., all parts of a building can
be obtained by simply accessing those elements storing the building’s ID as
root ID. This operation can be executed on thematic as well as geometry side.
The explicit storage of parent elements allows for reconstruction of the whole
recursion tree without information loss.

• Alternative design of GML geometry classes
In CityGML, spatial properties of features are represented by objects of
GML3’s geometry model, consisting of primitives, which may be combined to
form complexes, composite geometries, and aggregates. The usage for
CityGML is restricted to a subset of the GML3 geometry package, dealing
with the representation of polygonal geometries. This may be Points, Line-
Strings, Polygons, Solids and all valid geometry collections such as Compo-
siteSurfaces or MultiSolids. For topology and appearance information,
CityGML requires identification of geometry parts, even if contained in ge-
ometry collections. Spatial databases usually provide data types for the afore-
mentioned geometry types. In fact, only those data types enable spatial queries
within these databases. Unfortunately, database implementations of geometry
collections such as MultiSurface do not allow for naming and referencing of

6 Alexandra Stadler, Claus Nagel, Gerhard König, Thomas H. Kolbe

the internal geometry parts. This hinders their use for CityGML.
The solution is a simplified geometry model for 2D and 3D geometries as
shown in fig. 2.

<<Geometry>>
_BRepGeometry

<<Geometry>>
Polygon

+isSolid : boolean [1]
+isComposite : boolean [1]
+isTriangulated : boolean [1]

+geometry : Polygon [1]

<<Geometry>>
BRepAggregate

0..1

1..*

bRepMember <<Geometry>>
_BRepGeometry

<<Geometry>>
Polygon

+isSolid : boolean [1]
+isComposite : boolean [1]
+isTriangulated : boolean [1]

+geometry : Polygon [1]

<<Geometry>>
BRepAggregate

0..1

1..*

bRepMember

Fig. 2. Simplified modelling of polygon-based GML geometry classes.

The abstract root class is called _BRepGeometry and acts as basis for all sur-
face-based geometry objects within the city database. It specialises to two con-
crete classes Polygon and BRepAggregate which hold explicit coordinates or
information on aggregation hierarchy respectively. All surfaces are split into
individual polygons such that each is identifiable. Polygon uses a native spatial
data type (Oracle SDO_GEOMETRY of type Polygon) to enable spatial que-
ries. Polygons are then aggregated using BRepAggregate, again with each be-
ing identifiable. Various flags denote the type of aggregation: isTriangulated
denotes a TriangulatedSurface, isSolid distinguishes between surface and
solid, and isComposite defines whether this is an aggregate (e.g., MultiSolid)
or a composition (e.g., CompositeSolid). Geometric aggregates are arbitrary
aggregations of geometry elements which are not assumed to fulfill specific
topological constraints. In contrast, composite geometries represent a set of
topologically connected primitive geometric objects of same dimension, whose
interiors are disjoint. The geometric composite itself must be isomorphic to a
primitive geometric object [11]. The recursive relation bRepMember enables
nesting of geometry collections.

• Project specific classes and class attributes
The city database of Berlin must also store orthophotos, metadata, and version
controls. Since in CityGML this information is not represented, appropriate
classes and class attributes have been added.

• Data type customisation
Some of the data types specified in CityGML were substituted by simpler ones
to enable a more efficient representation within the database, e.g. code lists and
colour vectors were replaced by strings and non-polygonal GML geometry
types were mapped to their Oracle-specific data type SDO_GEOMETRY.

• Reducing multiplicities of class attributes
Simple attributes with an unbounded number of occurrences (*) are repre-
sented in the database by either an array containing a predefined maximum
number of elements or by a data type permitting storage of arbitrary values in

Making interoperability persistent: A 3D geo database based on CityGML 7

one object (e.g., several values may be represented by using the data type
String with a predefined separator to detach elements from each other). Only
then such attributes can be included into a single database column.

• Cardinalities and types of relations
To represent relations of cardinality n:m in a database, an additional table is
needed, which contains pairs of linked object IDs. With the simplification to
1:n or n:1 relations this additional table can be avoided. Therefore, all relations
defined in CityGML were tested for more restrictive interpretation. One result
was changing the aggregation between rooms and furniture to a composition,
since furniture is always bound to a specific room.

4 Derivation of the relational database schema

GML is inherently object oriented. The GML application schema of CityGML
contains specialization and aggregation hierarchies, nested objects, and complex
attributes. In order to map these structures to a relational schema different rules
have been proposed and discussed in the past. For example, the mapping of spe-
cialisation hierarchies onto database tables may follow one of three different map-
ping methods [13]. Fig. 3 illustrates these methods for the mapping of our simpli-
fied geometry representation, introduced in fig. 2 (the bRepMember relation is
omitted here).

BRepGeometry
ID: NUMBER <<PK>>
TYPE : VARCHAR2(30)
IS_SOLID : BOOLEAN
IS_COMPOSITE : BOOLEAN
IS_TRIANGULATED : BOOLEAN
GEOMETRY : SDO_GEOMETRY

BRepAggregate
ID: NUMBER <<PK>>
IS_SOLID : BOOLEAN
IS_COMPOSITE : BOOLEAN
IS_TRIANGULATED : BOOLEAN

Polygon
ID: NUMBER <<PK>>
IS_SOLID : BOOLEAN
IS_COMPOSITE : BOOLEAN
IS_TRIANGULATED : BOOLEAN
GEOMETRY : SDO_GEOMETRY

BRepAggregate
ID: NUMBER <<PK>><<FK>>

Polygon
ID: NUMBER <<PK>><<FK>>
GEOMETRY : SDO_GEOMETRY

BRepGeometry
ID: NUMBER <<PK>>
IS_SOLID : BOOLEAN
IS_COMPOSITE : BOOLEAN
IS_TRIANGULATED : BOOLEAN

BRepGeometry
ID: NUMBER <<PK>>
TYPE : VARCHAR2(30)
IS_SOLID : BOOLEAN
IS_COMPOSITE : BOOLEAN
IS_TRIANGULATED : BOOLEAN
GEOMETRY : SDO_GEOMETRY

BRepGeometry
ID: NUMBER <<PK>>
TYPE : VARCHAR2(30)
IS_SOLID : BOOLEAN
IS_COMPOSITE : BOOLEAN
IS_TRIANGULATED : BOOLEAN
GEOMETRY : SDO_GEOMETRY

BRepGeometry
ID: NUMBER <<PK>>
TYPE : VARCHAR2(30)
IS_SOLID : BOOLEAN
IS_COMPOSITE : BOOLEAN
IS_TRIANGULATED : BOOLEAN
GEOMETRY : SDO_GEOMETRY

BRepAggregate
ID: NUMBER <<PK>>
IS_SOLID : BOOLEAN
IS_COMPOSITE : BOOLEAN
IS_TRIANGULATED : BOOLEAN

Polygon
ID: NUMBER <<PK>>
IS_SOLID : BOOLEAN
IS_COMPOSITE : BOOLEAN
IS_TRIANGULATED : BOOLEAN
GEOMETRY : SDO_GEOMETRY

BRepAggregate
ID: NUMBER <<PK>>
IS_SOLID : BOOLEAN
IS_COMPOSITE : BOOLEAN
IS_TRIANGULATED : BOOLEAN

Polygon
ID: NUMBER <<PK>>
IS_SOLID : BOOLEAN
IS_COMPOSITE : BOOLEAN
IS_TRIANGULATED : BOOLEAN
GEOMETRY : SDO_GEOMETRY

BRepAggregate
ID: NUMBER <<PK>><<FK>>

Polygon
ID: NUMBER <<PK>><<FK>>
GEOMETRY : SDO_GEOMETRY

BRepGeometry
ID: NUMBER <<PK>>
IS_SOLID : BOOLEAN
IS_COMPOSITE : BOOLEAN
IS_TRIANGULATED : BOOLEAN

BRepAggregate
ID: NUMBER <<PK>><<FK>>

Polygon
ID: NUMBER <<PK>><<FK>>
GEOMETRY : SDO_GEOMETRY

BRepGeometry
ID: NUMBER <<PK>>
IS_SOLID : BOOLEAN
IS_COMPOSITE : BOOLEAN
IS_TRIANGULATED : BOOLEAN

BRepAggregate
ID: NUMBER <<PK>><<FK>>

Polygon
ID: NUMBER <<PK>><<FK>>
GEOMETRY : SDO_GEOMETRY

BRepGeometry
ID: NUMBER <<PK>>
IS_SOLID : BOOLEAN
IS_COMPOSITE : BOOLEAN
IS_TRIANGULATED : BOOLEAN

<<Geometry>>
_BRepGeometry

<<Geometry>>
Polygon

+isSolid : boolean [1]
+isComposite : boolean [1]
+isTriangulated : boolean [1]

+geometry : Polygon [1]

<<Geometry>>
BRepAggregate

0..1

1..*

bRepMember

a

b

c

Fig. 3. Mapping a class hierarchy to database tables: (a) mapping all classes to a single ta-
ble; (b) mapping non-abstract classes to their own tables; (c) mapping each class to a single
table.

In order to create space-efficient representations, systems that are capable of
automatically deriving relational schemas from GML application schemas typi-

8 Alexandra Stadler, Claus Nagel, Gerhard König, Thomas H. Kolbe

cally employ variants (c) or (b). For example, the two commercial systems GO
Loader [8, 12] from Snowflake Software and SupportGIS [4] from CPA Geo-
Information follow this line.

For the Berlin 3D geodatabase the mapping was carried out manually allowing
careful optimisations. For each CityGML class the mapping alternative was cho-
sen individually. The criteria were the expected number of tuples within the tables,
the number of joins to reconstruct the CityGML objects, and the overall complex-
ity of the most important queries (with respect to the CityGML object structure).
Emgård and Zlatanova [6] provide a more detailed discussion about the mapping
of a 3D information model to a relational database. They outline and evaluate two
alternative mappings that are optimised for spatial or semantic queries respec-
tively.

Central CityGML classes were identified that require individual tables. They
include CityObject, CityModel, SurfaceData, and major thematic classes such as
PlantCover or AbstractBuilding. Remaining classes have been merged into these
tables either due to similar structure (e.g., BuildingInstallation and IntBuildingIn-
stallation) or due to inheritance (e.g., Road, Track, Railway, and Square into
TransportationComplex). See [9] for CityGML class diagrams.

The overall root class Feature has no associated table. Instead, its attributes
GMLID, GML_NAME, and NAME_CODESPACE have been moved to direct
subclasses of CityObject. In addition, GMLID has been equipped with an attribute
GMLID_CODESPACE. It contains the full path of the originating CityGML in-
stance document or a user-defined value. The codespace is required since
GMLIDs are to be unique in single instance documents only. Only the combina-
tion of ID and codespace ensures uniqueness within the database. For the class
CityObject, the attributes GML_NAME and NAME_CODESPACE have been
pushed down an additional level along the inheritance hierarchy. This is due to
typical database queries, such as searching for a specific building named “Bran-
denburger Tor”. Storing the attributes directly in table CityObject would require
unnecessary table joins to identify affected buildings.

Finally, the attribute CLASS_ID has been added to CityObject. It helps imple-
menting queries starting in table CityObject, such as by GMLID, by spatial extent
(e.g., a bounding box), or through meta information. To facilitate further database
scanning, the attribute CLASS_ID provides information on the class affiliation of
the identified entries in CityObject and enables direct access to relevant tables.

The implementation of geometry in the 3D geodatabase (fig. 4) follows the first
approach (fig. 3 (a)). By avoiding multiple tables the number of joins is reduced,
resulting in higher database performance. As explained in section 3 (Simplified
treatment of recursions), the bRepMember relation (fig. 2) was reduced to two at-
tributes PARENT_ID and ROOT_ID. Further explanations can be found in the da-
tabase documentation [2].

Making interoperability persistent: A 3D geo database based on CityGML 9

Fig. 4. Implementation of 3D BRep geometry in the 3D geo database. This table stores eve-
rything from single Polygons over MultiSurfaces, CompositeSurfaces, TriangulatedSur-
faces, up to Solids, MultiSolids, and CompositeSolids. By only using Oracle’s
SDO_GEOMETRY type for single polygons, every polygon is a tuple with an ID value and
may be referenced e.g. from appearance information.

5 Creation of an import and export tool

In this section, we introduce a software tool for the import and export of CityGML
datasets for the 3D geo database. In addition to the relational geo database
schema, the tool is considered an integral part of an overall solution for the effi-
cient processing, storage, and retrieval of 3D city models.

In this context, the processing of CityGML and GML structures has to face
three main challenges:

1. GML provides a powerful and expressive data model and XML is verbose. This
results in voluminous encodings of spatial data. Thus, instance documents
quickly grow in file size and may exceed main memory limits (e.g., one million
buildings in LOD1 require about 7GB of disk space).

2. Objects may be arbitrarily nested leading to complex data structures which
have to be efficiently parsed and mapped to according database tables.

3. Property elements may reference their value using XLinks pointing to remote
objects within the same or an external document. These Xlinks have to be re-
solved in order to correctly represent objects within the geo database.

The import/export tool addresses these challenges by employing strategies for the
handling of CityGML instance documents of arbitrary file size and the resolving
of XLinks. Furthermore, high-performance data processing is achieved based on a
multithreaded software architecture. Fig. 5 gives an overview of the import and
export tool’s implementation. It is composed of three parts. In the middle, the
process of binding the underlying CityGML XML schema definition to a Java ob-
ject model is illustrated, further explained in section 5.1. The top and bottom parts
show the process of data import and export, addressed in sections 5.2 and 5.3.

10 Alexandra Stadler, Claus Nagel, Gerhard König, Thomas H. Kolbe

Access wrapper

Xsd Schema
<xs:complexType
name="CityModelType">

<xs:complexContent>
<xs:extension

...

Java
binding

Schema-derived
classes

public class CityModel {
… }

CityGML
file__________________________________

read
CityGML

Features
CityModel cityModel1 =

new CityModel () ;
…

follows instance of

Export
functionality

Import
functionality

_________ _________

Oracle
Database

Database
import

Features

CityModel cityModel1 =
new CityModel () ;

…

CityGML
file__________________________________

write
CityGML

Database
export

applied

Data import

Data export

applied

follows instance of

Fig. 5. Import and export tool: Overview of the overall data flow.

Special attention is directed to the management of object IDs, because only a
systematic and careful usage of a worldwide unique identifier guarantees consis-
tent updating of geo objects stored in the database. As GMLIDs are optional and
unique only within one dataset, all imported objects are either assigned a new
worldwide unique identifier (UUIDs) or only objects with missing GMLIDs are
assigned such UUIDs. In both cases, the attribute GMLID_CODESPACE de-
scribed in section 4 is added to every object (including surface-based geometries).

5.1 Software design of the import/export tool

The import/export tool is implemented as a Java application. It employs a chunk
processing strategy for XML documents in order to handle instance documents of
arbitrary file size. Furthermore, the software design is entirely based on multi-
threading allowing for high-performance and concurrent data processing.

Support for CityGML instance documents of arbitrary file size

The processing of large XML documents is realized through a stream-based XML
object binding. This approach utilizes two existing Java frameworks for reading
and writing verbose XML files. On the one hand, the Java Architecture for XML
Binding (JAXB) is employed to facilitate an object-oriented view of XML data.
On the other hand, the Simple API for XML (SAX) is used for the stream-based

Making interoperability persistent: A 3D geo database based on CityGML 11

and event-driven parsing of XML documents. By combining both frameworks, the
benefits of each API can be leveraged while limiting their downsides.

The JAXB framework provides a convenient and easy-to-use way to validate
and process XML content using Java objects by binding the underlying XML
schema definition to a Java object model. It enables storing and retrieving of data
in memory in any XML format without the need to implement a specific set of
XML loading and saving routines. Moreover, the generated object model captures
the structure of XML better than general-purpose APIs like the XML Document
Object Model (DOM) or SAX. Like most object-binding APIs, JAXB requires the
entire XML stream or file to be present in main memory before data processing
can begin. Consequently, memory consumption limits the maximum XML docu-
ment size.

In contrast, streaming parsers such as SAX, allow for a serial access to XML
documents. Each element of the document is passed to the application in sequence
of its occurrence via user-defined callback methods. Accordingly, the memory
footprint of this event-driven approach is mainly based on the data stored in a sin-
gle XML element, and thus is always only a small fraction of the size of the entire
document. However, stream-based parsing is unidirectional, i.e., previously parsed
data cannot be re-read. This hinders a simple and object-oriented handling of
complex XML content.

In order to provide both an object-oriented view of XML data and a solution to
the data overload problem, the import/export tool implements a two-stage ap-
proach: 1) XML documents are parsed using a SAX streaming parser which splits
the document into single chunks of manageable size. For each chunk, the occur-
ring SAX events are recorded using a memory buffer. 2) The buffer contents are
individually mapped to Java objects for data processing using JAXB. For writing
XML documents, the inverse process is applied.

By this means, memory usage is no longer dependent on the document size, but
only relates to the amount of data kept in the memory buffer. For CityGML in-
stance documents, reasonable XML chunks are embraced by <cityObjectMem-
ber> tags which represent the top-level features within a CityGML model.

In anticipation of future changes, a thin access wrapper is added to the JAXB
binding classes. This wrapper abstracts from the underlying binding classes to en-
able parallel support of CityGML version 0.4.0 and 1.0.0.

Concurrency of data processing

The overall architecture of the import/export tool is based on multithreading, i.e.,
concurrent execution of multiple interacting computational tasks. Generally, each
task within the import/export process of CityGML data is carried out by separate
threads. The decoupling of compute bound from I/O bound tasks and their parallel
non-blocking processing usually leads to an increase of the overall application
performance. In a multi-core environment, threads can even be executed simulta-
neously on different CPUs.

However, a common and simplistic thread-per-task approach faces disadvan-
tages for a large number of active threads such as thread life-cycle overhead and
resource thrashing. For this reason, the import/export application reuses threads

12 Alexandra Stadler, Claus Nagel, Gerhard König, Thomas H. Kolbe

for multiple but homogenous tasks by applying a pooled threads model. Thread-
creation overhead is spread over many tasks, and because a thread already exists
within the pool when a task is requested, the delay introduced by thread creation is
eliminated.

The thread pool model is implemented as a work queue combined with a fixed
group of associated worker threads (fig. 6). The work queue is realized as a block-
ing queue which is a common pattern in multithreaded programming: one thread
produces objects, i.e., single tasks to be performed, and places them on a queue for
consumption by other threads, which remove them from the queue. The blocking
queue implementation is following the producer-consumer design pattern [7] to
avoid deadlocks of the associated worker threads.

Queue

Thread Pool

worker

worker

worker

Thread Pool

Queue

worker

asynchronoussynchronous asynchronoussynchronous

Fig. 6. Thread pools are implemented as work queues with fixed groups of associated
worker threads.

Single thread pools can be easily combined to entire process chains. The worker
threads within a thread pool concurrently process the tasks placed on their associ-
ated work queue, and pass their processing results to the work queue of the subse-
quent thread pool. This allows for the decoupling of process steps in a modular
way, allowing for easy extension by further process steps. Inter-process communi-
cation between the process steps is realized by an event-dispatcher thread which is
implemented as single-worker pool allowing for asynchronous and synchronous
message transfer according to the publisher-subscriber design pattern [7].

The optimal number of worker threads within a thread pool mainly depends on
the number of processors available, the nature of the task, e.g., I/O bound or com-
pute bound, and the cost of thread context switching. The import/export tool sup-
ports user-defined threshold values and a management unit per thread pool for
autonomous adaptation based on the overall workload. Furthermore, the queue
size is a determining factor for memory consumption, and thus can be adjusted to
specific system configurations.

5.2 The import process

The process of importing CityGML datasets into the database is illustrated in fig.
7. The workflow is implemented by chaining thread pools which cover single

Making interoperability persistent: A 3D geo database based on CityGML 13

steps of the import process. It comprises thread pools for the chunk-processing of
the input XML document (parser thread pool), the conversion of single chunks to
JAXB objects representing CityGML top-level features (converter thread pool),
and the data processing of these features (importer and XLink thread pools). The
associated work queues are also shown in fig. 7.

__
SAX parsing Feature

creation

JAXB
unmarshalling

CityGML
input file

Temporary
Buffer

Buffer
Queue

TopLevel Feature
Queue

Parser Thread
(1 instance)

Converter Thread
(limited number

of instances)

__
SAX parsing Feature

creation

JAXB
unmarshalling

CityGML
input file

Temporary
Buffer

Buffer
Queue

TopLevel Feature
Queue

Parser Thread
(1 instance)

Converter Thread
(limited number

of instances)

commit
SQL creation

TopLevel Feature
Queue

SQL statement
Queues

commit

XLinks

Geodata

XLink
information

Database
update

Oracle
Database

with separate
XLink storage
(temporarily)

XLink Thread
(limited number

of instances)

Import Filter

XLink
Queue

Importer Thread
(limited number

of instances)

commitcommit
SQL creation

TopLevel Feature
Queue

SQL statement
Queues

commitcommit

XLinks

Geodata

XLink
information

Database
update

Oracle
Database

with separate
XLink storage
(temporarily)

XLink Thread
(limited number

of instances)

Import Filter

XLink
Queue

Importer Thread
(limited number

of instances)
Fig. 7. Import Tool (phase 1) – Detailed workflow from input CityGML instance docu-
ments to database storage. XLink references are separately stored in temporary tables to en-
able XLink resolving in phase 2.

The first two steps of the process chain, i.e., chunk processing of the input data
and unmarshalling of CityGML top-level features, have already been discussed in
section 5.1. By analyzing the resulting JAXB objects, the subsequent importer
thread shown in fig. 7 derives the final SQL statements using the import function-
ality, which maps the objects to corresponding tables of the relational database
schema (section 4). This step can be customized by user-defined import filters. For
example, the import may be restricted to a given set of feature types, e.g., only
CityGML buildings, or to features located within a geographic bounding box. Fil-
tered objects can be immediately skipped and released from memory.

In order to optimize database response times, SQL statements are precompiled
and stored in corresponding Java objects by the importer thread. The precompiled
objects can then be used to efficiently execute the same statement multiple times
with varying data. Furthermore, SQL statements are collected and only forwarded

14 Alexandra Stadler, Claus Nagel, Gerhard König, Thomas H. Kolbe

to the database if a certain amount of statements has been reached (bulk process-
ing). This allows for an efficient batch processing on the database side. The opti-
mal number of statements within a batch depends on the complexity of the im-
ported CityGML dataset, and thus can be customized.

The multithreaded design of the import tool allows for the concurrent execution
of all process steps. For example, the parsing of the XML document is never
blocked by threads waiting for database response, and multiple JAXB objects can
be processed simultaneously. However, the chunk-processing of the input data
also introduces a further level of complexity. In CityGML instance documents,
properties of features like relations to other features or geometry objects may be
denoted using the XLink concept of GML3. Thus, instead of having the XML
content inline within the feature element, the content is given by reference to a
remote object identified by its GMLID. Since backward references within the
same XML document are allowed, a one-stage approach for resolving of XLinks
would require the whole document to be present in memory.

To solve this problem, the import tool employs a two-phase strategy. In the first
run (fig. 7), features are written to the database neglecting references to remote
objects. However, if a feature contains an XLink, an additional entry is written to
a temporary table by a separate XLink thread. This entry mainly contains the ref-
erencing feature and the referenced GMLID. Furthermore, the import tool keeps
track of every previously encountered GMLID and its corresponding object repre-
sentation in database. In a consecutive run, only these temporary tables are revis-
ited and queried. Since the entire XML document has been processed at this point
in time, valid references can be resolved and processed accordingly. The second
phase of the import process is depicted in fig. 8.

By means of this two-phase import process, the advantages of chunk-
processing can be kept and a correct storage of CityGML instance documents
within the database can be ensured.

Database
updateXLink

splitting

commit

XLink Resolver
Queue

SQL creation

XLinks

_________ _________

Oracle
Database

with resolved
XLinks

XLink
Resolver Thread

(limited number
of instances)

SQL statement
Queue

XLink
Splitter Thread

(1 instance)

Oracle
Database

with separate
XLink storage
(temporarily)

Database
updateXLink

splitting

commitcommit

XLink Resolver
Queue

SQL creation

XLinks

_________ _________

Oracle
Database

with resolved
XLinks

XLink
Resolver Thread

(limited number
of instances)

SQL statement
Queue

XLink
Splitter Thread

(1 instance)

Oracle
Database

with separate
XLink storage
(temporarily)

Fig. 8. Import Tool (phase 2) – After phase 1 is completed, the information stored in the
temporary tables is queried (splitter thread pool) to resolve XLink references to remote ob-
jects (resolver thread pool).

Making interoperability persistent: A 3D geo database based on CityGML 15

5.3 The export process

The workflow for exporting CityGML datasets from the database is shown in fig.
9. As for the import, the workflow is realized as a process chain combining several
thread pools, each of which covers a separate process step.

The first step of this workflow is to query the database according to user-
defined criteria. These export filters are identically defined as the import filters,
e.g., allowing for spatial queries of features within a given geographic bounding
box. Spatial queries are performed within the database itself using the spatial in-
dexing capabilities of Oracle 10G R2 Spatial. Furthermore, the queries are only
executed on a single database table in the first run, which only holds general in-
formation for all contained features. Thus, the queries can be rapidly processed by
the database and returned to the export tool.

Export Filter

Exporter Thread
(limited number

of instances)

Feature

Database
output

SQL

SQL

TopLevel Feature
ID Queue

Nested Feature / Geometry Request

Oracle
Database

Splitter Thread
(1 instance)

Export Filter

Exporter Thread
(limited number

of instances)

Feature

Database
output

SQL

SQL

TopLevel Feature
ID Queue

Nested Feature / Geometry Request

Oracle
Database

Splitter Thread
(1 instance)

__

CityGML
output file

JAXB
marshalling

Temporary
Buffer

Buffer
Queue

write
CityGML

IO Writer Thread
(1 instance)

Exporter Thread
(limited number

of instances)

Feature
__

CityGML
output file

JAXB
marshalling

Temporary
Buffer

Buffer
Queue

write
CityGML

IO Writer Thread
(1 instance)

Exporter Thread
(limited number

of instances)

__

CityGML
output file
__

CityGML
output file

JAXB
marshalling

Temporary
Buffer

Buffer
Queue

write
CityGML

IO Writer Thread
(1 instance)

Exporter Thread
(limited number

of instances)

Feature

Fig. 9. Export Tool – Detailed workflow from database filtering to the export of CityGML
instance documents.

As soon as the first query results are returned, the splitter thread places them on
the work queue of the subsequent exporter thread. By this means, the worker

16 Alexandra Stadler, Claus Nagel, Gerhard König, Thomas H. Kolbe

threads of the export pool already start to reconstruct the corresponding CityGML
feature objects while the splitter thread still processes the initial database response.

Depending on the type of feature to be reconstructed, the exporter workers have
to execute more complex database queries spanning several tables in order to re-
trieve the necessary feature data. The export functionality provides respective
code for each feature type. At this stage, most of the data processing is done by the
database server due to efficient use of SQL join statements. Furthermore, if a sin-
gle worker thread is waiting for database response, it does not block the other
threads within the export pool. If all data has been received, it is mapped to corre-
sponding JAXB objects. Also the export tool keeps track of the feature’s GMLID
in order to avoid duplicate output of objects and to use XLinks instead. The JAXB
objects are marshalled to SAX events which are recorded by a temporary memory
buffer. The buffered SAX events are placed on the queue of the subsequent thread
pool. Afterwards, the export thread continues to work on the next feature.

The last step of the export process, i.e., writing the entire feature data to a
CityGML instance document, is carried out by an I/O writer thread. This thread
takes the SAX event buffers from its work queue and translates them into XML
elements. Again, these file-based processes are decoupled from all other steps of
the process chain.

5.4 Performance

Currently, performance has not been measured thoroughly. However, initial tests
exhibit good throughput in the following setting:
• Database server: 2 x Intel Xeon Dual Core@3GHz, 6GB RAM, SCSI Raid 5

Disk Array, Windows Server 2003 SP2, 100MBit LAN
• Client running the import/export tool: Intel Core2 CPU 6600@2.4GHz, 2GB

RAM, WindowsXP SP2, 100MBit LAN
The database server was running a default Oracle 10G R2 Spatial installation
without manual tunings or additional settings. All import tests have been per-
formed with spatial indexes disabled. Additionally, indexes on table rows contain-
ing VARCHAR2 values (e.g., GMLID, GMLID_CODESPACE) were switched
off. Unless stated otherwise, Oracle’s table versioning was disabled. The perform-
ance measurements for the import of different CityGML instance documents are
shown in tab. 1.

Tab. 1. Performance measurements for the import of CityGML datasets using the devel-
oped import tool. Row headers are as follows: [1] File size, [2] Overall import time, [3]
Top-level features per second (please note that these may contain nested features which are
not counted here), [4] Workers per thread pool, [5] Imported top-level features / geometries
/ texture images / Xlinks, [6] Versioning using Oracle Workspace Manager

Dataset [1] [2] [3] [4] [5] [6]
1 mio. LOD1
buildings

7.5GB 1:15h 228 4 1055951 / 11511040
/ 0 / 0

off

Making interoperability persistent: A 3D geo database based on CityGML 17

Dataset [1] [2] [3] [4] [5] [6]
1 mio. LOD1
buildings

7.5GB 2:25h 121 1 1055951 / 11511040
/ 0 / 0

off

209 complex LOD3
objects

40.1MB 17s 12 4 209 / 73823 / 0 / 0 off

-“- 40.1MB 24s 9 1 209 / 73823 / 0 / 0 off
-“- 40.1MB 3:20h 0.02 4 209 / 73823 / 0 / 0 on
10927 fully textured
LOD2 buildings

163MB +
57 MB
textures

25min 7 4 10927 / 434714 /
43348 / 391006

off

-“- 163MB +
57 MB
textures

42min 4 1 10927 / 434714 /
43348 / 391006

off

-“-
(w/o textures)

163MB

6:30
min

28 4 10927 / 434714 /
0 / 391006

off

Corresponding export tests are illustrated in tab. 2.

Tab. 2. Performance measurements for the export of CityGML datasets using the devel-
oped export tool. Row headers are as follows: [1] File size, [2] Overall export time, [3]
Top-level features per second, [4] Worker per thread pool, [5] Exported top-level features /
geometries / texture images / XLinks

 [1] [2] [3] [4] [5]
1 mio. LOD1
buildings

7.5GB 38min 455 10 1055951 / 11511040 /
0 / 0

-“- 7.5GB 1:57h 150 1 1055951 / 11511040 /
0 / 0

209 various and
complex LOD3 ob-
jects

40.1MB 7s 30 10 209 / 73823 / 0 / 0

-“- 40.1MB 17s 12 1 209 / 73823 / 0 / 0
10927 fully tex-
tured LOD2 build-
ings

163MB
+

57 MB
textures

4:20min 42 4 10927 / 434714 /
43348 / 391006

-“-
(w/o textures)

163MB
+

57 MB
textures

2min 91 4 10927 / 434714 /
43348 / 391006

6 Conclusions and Future Work

In this paper a relational 3D geo database for the storage of CityGML data was
presented. Optimizations on the object model and its mapping to a relational
schema were discussed. Furthermore, a concept for multithreaded processing of

18 Alexandra Stadler, Claus Nagel, Gerhard König, Thomas H. Kolbe

large (City)GML files was proposed. The first performance evaluations showed
that the usage of concurrent worker threads leads to significant speedups.

The 3D geodatabase has been developed in the course of the project “Geo data
management for the Berlin government – The official Berlin 3D city model” [5].
By relying on CityGML’s comprehensive data model, members of different com-
munities, such as city planners, architects, surveyors, etc. are provided with a da-
tabase for semantically rich city models. With the project close-out at the end of
this year the entire software will be released as Open Source on [2].

In the future, the database administration tool will be extended by data match-
ing functionality, i.e. buildings in the database that represent the same real world
object will be detected and linked automatically. This allows for the exchange of
thematic information attached to either of the buildings as well as automated up-
dating procedures. In case of equivalent geometries, one of the objects will be de-
leted to avoid database inconsistencies.

Finally, there is room for performance optimisations. Important topics not yet
covered are logical table and index partitions as well as their optimal distribution
on physical volumes.

References

1. 3D city database, version 1, 2006. http://www.3dcitydb.org
2. 3D city database, version 2, 2008. Accessible via http://www.citygml.org
3. Cox, S., Daisey, P., Lake, R., Portele, C., Whiteside, A, 2004. OpenGIS Geography

Markup Language (GML) Implementation Specification, Version 3.1.1, OGC Doc.
No. OGC 03-105r1, Open Geospatial Consortium

4. CPA Geo-Information, SupportGIS product website, 2008. http://www.supportgis.de
5. Döllner, J., Kolbe, T.H., Liecke, F., Sgouros, T., Teichmann, K., 2006. The Virtual 3D

City Model of Berlin - Managing, Integrating, and Communicating Complex Urban In-
formation, In: Proc. of the 25th Urban Data Management Symposium UDMS, Aalborg

6. Emgård, L., Zlatanova, S., 2007. Implementation alternatives for an integrated 3D In-
formation Model, In: Advances in 3D Geoinformation Systems, Springer

7. Gamma, E., Helm, R., Johnson, R.E., 1995. Design Patterns. Elements of Reusable
Object-Oriented Software, Addison-Wesley Longman, Amsterdam

8. Snowflake Software, GO Loader product website, 2008.
http://www.snowflakesoftware.co.uk/products/goloader/index.htm

9. Gröger, G., Kolbe, T.H., Czerwinski, A., Nagel, C., 2008. OpenGIS City Geography
Markup Language (CityGML) Encoding Standard, Version 1.0.0, OGC Doc. No. 08-
007r1, Open Geospatial Consortium

10. Gröger, G., Kolbe, T.H., Schmittwilken, J., Stroh, V., Plümer, L., 2005. Integrating
versions, history and levels-of-detail within a 3D geodatabase, In: Proc. of Int. Work-
shop on Next Generation City Models, Bonn, EuroSDR publications

11. Herring, J., 2001. The OpenGIS Abstract Specification, Topic 1: Feature Geometry
(ISO 19107 Spatial Schema), Version 5. OGC Document Number 01-101

12. Müller, H., Curtis, E., 2005. Extending 2D interoperability frameworks to 3D, In: Pro-
c. of Int. Workshop on Next Generation City Models, Bonn, EuroSDR publications

13. Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorensen, W., 1991: Object-
Oriented Modelling and Design, Prentice Hall

