
3D City Database for CityGML

Version 4.2

Documentation

2019

3D City

Database

2 3D Geodatabase for CityGML 2019

The images on the cover page were provided by:

- Chair of Photogrammetry and Remote Sensing & Chair of Cartography, Technische

Universität München

- Geobasisdaten: © Stadtvermessung Frankfurt am Main

- IDAC Ltd, UK.

- virtualcitySYSTEMS GmbH, Berlin, Germany

- Chair of Geoinformatics, Technische Universität München. Image created based on

master thesis work of Matthias Körner, jointly supervised with HTW Dresden

- 3D City Model of Berlin © Berlin partner GmbH

- M.O.S.S. Computer Grafik Systeme GmbH, Taufkirchen, Germany

3D Geodatabase for CityGML 2019 3

Versions of software packages

This documentation covers the following versions of the 3D City Database and its tools.

Software package Version

3D City Database 4.0.1, 4.0.0

Importer/Exporter and plugins 4.2.x, 4.1.x, 4.0.0

3DCityDB-Web-Map-Client 1.6.2

Web Feature Service 4.2.x, 4.1.x, 4.0.0

Active participants in development

Name Institution Email

Thomas H. Kolbe

Son H. Nguyen

Kanishk Chaturvedi

Bruno Willenborg

Andreas Donaubauer

Chair of Geoinformatics,

Technische Universität München

thomas.kolbe@tum.de

son.nguyen@tum.de

kanishk.chaturvedi@tum.de

b.willenborg@tum.de

andreas.donaubauer@tum.de

Claus Nagel

Zhihang Yao

virtualcitySYSTEMS GmbH, Berlin cnagel@virtualcitysystems.de

zyao@virtualcitysystems.de

Harald Schulz

Philipp Willkomm

György Hudra

M.O.S.S. Computer Grafik Systeme GmbH,

Taufkirchen, Germany

hschulz@moss.de

pwillkomm@moss.de

ghudra@moss.de

Felix Kunde Beuth University of Applied Sciences felix-kunde@gmx.de

Participants in earlier developments

The 3D City Database Version 4.0 and its tools are based on earlier versions. During the

development phase 2006-2012 at the Institute for Geodesy and Geoinformation Science, TU

Berlin, the following individuals contributed to the development:

Name Institution Email

Thomas H. Kolbe

Claus Nagel

Javier Herreruela

Gerhard König

Alexandra Lorenz

(geb. Stadler)

Babak Naderi

Institute for Geodesy and Geoinformation

Science, Technische Universität Berlin

Felix Kunde University of Potsdam

mailto:thomas.kolbe@t

4 3D Geodatabase for CityGML 2019

During the development phase 2004-2006 at the Institute for Cartography and Geo-

information, University of Bonn, the following individuals contributed to the development:

Name Institution Email

Thomas H. Kolbe

Lutz Plümer

Gerhard Gröger

Viktor Stroh

Jörg Schmittwilken

Institute for Cartography and Geoinformation,

University of Bonn

Andreas Poth

Ugo Taddei

lat/lon GmbH, Bonn

3D Geodatabase for CityGML 2019 5

Table of Contents

DISCLAIMER ... 11

1 INTRODUCTION .. 13

1.1 Main features of 3DCityDB ... 15

1.2 System and design decisions .. 20

1.3 List of changes between software versions .. 21

 Notable changes between 4.0 and 3.3 .. 21

1.4 Development history .. 23

1.5 Acknowledgements .. 24

2 DATA MODELLING AND DATABASE DESIGN .. 27

2.1 Simplification compared to CityGML 2.0.0 .. 27

 Multiplicities, cardinalities and recursions .. 27

 Data type adaptation .. 28

 Project specific classes and class attributes ... 28

 Simplified design of GML geometry classes .. 28

2.2 UML class diagram ... 28

 Geometric-topological Model .. 29

 Implicit Geometry.. 30

 Appearance Model ... 31

 Thematic model ... 34

2.2.4.1 Core Model .. 34

2.2.4.2 Building model .. 36

2.2.4.3 Bridge Model ... 39

2.2.4.4 CityFurniture Model .. 42

2.2.4.5 Digital Terrain Model .. 43

2.2.4.6 Generic Objects and Attributes ... 45

2.2.4.7 LandUse Model ... 47

2.2.4.8 Transportation Model .. 47

2.2.4.9 Tunnel Model .. 49

2.2.4.10 Vegetation Model .. 52

2.2.4.11 WaterBodies Model ... 53

2.3 Relational database schema .. 55

 Mapping rules, schema conventions .. 55

2.3.1.1 Mapping of classes onto tables .. 55

2.3.1.2 Explicit declaration of class affiliation .. 55

 Conceptual database structure ... 58

 Database schema .. 59

2.3.3.1 Metadata Model ... 59

6 3D Geodatabase for CityGML 2019

2.3.3.2 Core Model .. 62

2.3.3.3 Tables for geometry representation ... 64

2.3.3.4 Appearance Model .. 71

2.3.3.5 Building Model .. 76

2.3.3.6 Bridge Model ... 82

2.3.3.7 CityFurniture Model .. 84

2.3.3.8 Digital Terrain Model .. 85

2.3.3.9 Generic Objects and Attributes ... 87

2.3.3.10 LandUse Model ... 89

2.3.3.11 Transportation Model .. 89

2.3.3.12 Tunnel Model .. 91

2.3.3.13 Vegetation Model .. 93

2.3.3.14 WaterBody Model ... 94

 Sequences .. 95

 Definition of the CRS for a 3D City Database instance 96

3 IMPLEMENTATION AND INSTALLATION ... 99

3.1 System requirements .. 99

 3D City Database ... 99

 Importer/Exporter Tool .. 99

3.2 Installation of the Importer/Exporter and the 3D City Database SQL Scripts ... 100

3.3 Setting up the database schema ... 102

 Shell Scripts ... 102

 SQL Scripts.. 103

 Installation steps on Oracle Databases .. 103

 Installation steps on PostgreSQL ... 106

3.4 Working with multiple database schemas ... 108

 Create and address database schemas .. 108

 Read and write access to a schema .. 109

 Schema support in stored procedures .. 109

3.5 Migration from previous major releases ... 110

 V2 to V4 Migration on Oracle ... 111

 V2 to V4 Migration on PostgreSQL .. 113

 V3 to V4 Migration ... 113

3.6 Upgrade between minor releases .. 113

4 STORED PROCEDURES AND ADDITIONAL FEATURES 115

4.1 User-defined data types ... 115

4.2 CITYDB_UTIL ... 116

4.3 CITYDB_CONSTRAINT .. 117

4.4 CITYDB_IDX ... 118

4.5 CITYDB_SRS ... 119

3D Geodatabase for CityGML 2019 7

4.6 CITYDB_STAT .. 120

4.7 CITYDB_OBJCLASS ... 120

4.8 CITYDB_DELETE ... 120

4.9 CITYDB_ENVELOPE ... 123

5 IMPORTER / EXPORTER .. 125

5.1 Running and using the Importer / Exporter .. 125

5.2 Database connections and operations .. 128

 Managing and establishing database connections 128

 Executing database operations ... 130

5.3 Importing CityGML files ... 137

5.4 Exporting to CityGML ... 142

 SQL queries ... 147

 XML query expressions... 149

5.4.2.1 <typeNames> parameter .. 149

5.4.2.2 <propertyNames> projection clause 151

5.4.2.3 <filter> selection clause .. 152

5.4.2.4 <count> parameter ... 160

5.4.2.5 <lods> parameter .. 161

5.4.2.6 <appearance> parameter ... 162

5.4.2.7 <tiling> parameter ... 163

5.4.2.8 targetSrid attribute .. 164

5.4.2.9 Using address information and 3DCityDB metadata in queries 164

5.4.2.10 Using XML queries in batch processes 166

5.5 Exporting to KML/COLLADA/glTF .. 167

 Support of GenericCityObject having any geometry types 174

 Loading exported models in Google Earth and Cesium Virtual Globe ... 175

5.6 Preferences .. 178

 CityGML import preferences .. 179

5.6.1.1 Continuation .. 179

5.6.1.2 gml:id handling .. 180

5.6.1.3 Address .. 181

5.6.1.4 Appearance .. 183

5.6.1.5 Geometry ... 183

5.6.1.6 Indexes ... 185

5.6.1.7 XML validation ... 186

5.6.1.8 XSL Transformation .. 187

5.6.1.9 Import log .. 188

5.6.1.10 Resources ... 189

 CityGML export preferences ... 192

5.6.2.1 CityGML version .. 192

8 3D Geodatabase for CityGML 2019

5.6.2.2 Tiling options .. 192

5.6.2.3 CityObjectGroup ... 193

5.6.2.4 Address .. 194

5.6.2.5 Appearance .. 195

5.6.2.6 XLinks ... 196

5.6.2.7 XSL Transformation .. 197

5.6.2.8 Resources ... 198

 KML/COLLADA/glTF export preferences ... 199

5.6.3.1 General Preferences ... 199

5.6.3.2 Rendering Preferences ... 204

5.6.3.3 Information Balloon Preferences ... 213

5.6.3.4 Altitude/Terrain Preferences ... 220

5.6.3.5 General setting recommendations ... 225

 Management of user-defined coordinate reference systems 227

 General preferences ... 229

5.6.5.1 Cache ... 229

5.6.5.2 Import and export path .. 230

5.6.5.3 Network proxies .. 230

5.6.5.4 API Keys ... 231

5.6.5.5 Logging ... 232

5.6.5.6 Language selection .. 234

5.7 Map window for bounding box selections ... 235

5.8 Using the command line interface (CLI) ... 238

6 IMPORTER / EXPORTER PLUGINS ... 241

6.1 Introduction to the plugin architecture ... 241

6.2 Spreadsheet Generator Plugin (SPSHG) .. 242

 Definition ... 242

 Plugin installation .. 242

 User Interface .. 243

6.2.3.1 Main Parameters .. 243

6.2.3.2 Columns ... 244

6.2.3.3 Content Source .. 249

6.2.3.4 Output .. 249

6.3 ADE Manager Plugin .. 256

 Definition ... 256

 Plugin installation .. 256

 User Interface .. 258

6.3.3.1 ADE Registration .. 258

6.3.3.2 ADE Transformation ... 261

 Workflow of extending the Import/Export Tool 264

7 WEB FEATURE SERVICE .. 271

3D Geodatabase for CityGML 2019 9

7.1 System requirements .. 271

7.2 Installation ... 272

7.3 Configuring the Web Feature Service ... 274

 Database settings ... 274

 Capabilities settings ... 277

 Feature type settings .. 278

 Operations settings .. 279

 Postprocessing settings .. 280

 Server settings.. 281

 Cache settings .. 282

 Constraints settings .. 282

 Logging settings .. 283

7.4 Using the Web Feature Service ... 284

 Basic functionality ... 284

7.4.1.1 WFS operations ... 284

7.4.1.2 Service URL .. 285

7.4.1.3 Service bindings .. 286

7.4.1.4 CityGML feature types .. 286

7.4.1.5 Exception reports ... 287

 GetCapabilities operation .. 287

 DescribeFeatureType operation ... 288

 ListStoredQueries operation .. 290

 DescribeStoredQuery operation .. 291

 GetFeature operation ... 293

7.5 Web-based WFS client ... 295

8 3DCITYDB-WEB-MAP-CLIENT .. 297

8.1 System requirements .. 298

8.2 Installation and configuration ... 298

8.3 Using the 3D web client .. 300

 Overview of the relevant features and functionalities 300

 Handling KML/glTF models with online spreadsheet 305

 Handling Web Map Service data ... 312

 Handling Digital Terrain Models .. 314

 Interaction with 3D objects .. 316

 Mobile Support Extension ... 322

 Using the 3D Web Client from the 3DCityDB homepage 324

9 3DCITYDB DOCKER IMAGES .. 325

9.1 Getting started ... 325

9.2 Further images .. 326

10 REFERENCES ... 327

10 3D Geodatabase for CityGML 2019

APPENDIX A CHANGELOG ... 331

A.1 3D City Database relational schema .. 331

A.1.1 General changes ... 331

A.2 3D City Database scripts .. 331

A.3 3D City Database stored procedures .. 332

A.3.1 General changes ... 332

A.3.2 UTIL package .. 332

A.3.3 IDX package .. 332

A.3.4 SRS package .. 332

A.3.5 STAT package ... 332

A.3.6 DELETE package .. 332

A.3.7 DELETE_BY_LINEAGE package ... 333

A.3.8 ENVELOPE package .. 333

A.4 3D City Database Importer/Exporter .. 333

A.4.1 General changes ... 333

A.4.2 CityGML import .. 333

A.4.3 CityGML export .. 334

A.4.4 KML/COLLADA/glTF export .. 334

A.5 Web Feature Service ... 334

A.6 3D Web Map Client ... 335

APPENDIX B 3DCITYDB @ TU MÜNCHEN ... 337

B.1 Interactive Cloud-based 3D Webclient ... 337

B.2 Research Projects in which 3DCityDB is being used ... 338

B.3 Current and future work on 3DCityDB ... 338

APPENDIX C 3DCITYDB @ VIRTUALCITYSYSTEMS 339

C.1 virtualcityDATABASE ... 339

C.2 virtualcitySUITE – The 3D City Platform ... 340

APPENDIX D 3DCITYDB @ M.O.S.S. .. 341

D.1 novaFACTORY at a glance ... 341

D.2 novaFACTORY 3D GDI .. 342

3D Geodatabase for CityGML 2019 11

Disclaimer

The 3D City Database (3DCityDB) version 4.0 has been developed in collaboration of the

Chair of Geoinformatics, Technische Universität München (TUMGI), virtualcitySYSTEMS

GmbH, and M.O.S.S. Computer Grafik System GmbH. 3DCityDB is free and Open Software

licensed under the Apache License, Version 2.0. See the file LICENSE file shipped together

with the software for more details. You may obtain a copy of the license at

http://www.apache.org/licenses/LICENSE-2.0.

Please note that releases of the software before version 3.3.0 continue to be licensed under

GNU LGPL 3.0. To request a previous release of the 3D City Database under Apache License

2.0 create a GitHub issue at https://github.com/3dcitydb.

THE SOFTWARE IS PROVIDED BY TUMGI "AS IS" AND "WITH ALL FAULTS."

TUMGI MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND

CONCERNING THE QUALITY, SAFETY OR SUITABILITY OF THE SOFTWARE,

EITHER EXPRESSED OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY

IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR

PURPOSE, OR NON-INFRINGEMENT.

TUMGI MAKES NO REPRESENTATIONS OR WARRANTIES AS TO THE TRUTH,

ACCURACY OR COMPLETENESS OF ANY STATEMENTS, INFORMATION OR

MATERIALS CONCERNING THE SOFTWARE THAT IS CONTAINED ON AND

WITHIN ANY OF THE WEBSITES OWNED AND OPERATED BY TUMGI.

IN NO EVENT WILL TUMGI BE LIABLE FOR ANY INDIRECT, PUNITIVE, SPECIAL,

INCIDENTAL OR CONSEQUENTIAL DAMAGES HOWEVER THEY MAY ARISE AND

EVEN IF TUMGI HAVE BEEN PREVIOUSLY ADVISED OF THE POSSIBILITY OF

SUCH DAMAGES.

http://www.apache.org/licenses/LICENSE-2.0
https://github.com/3dcitydb

12 3D Geodatabase for CityGML 2019

3D Geodatabase for CityGML 2019 13

1 Introduction

Virtual 3D city and landscape models are provided for an increasing number of cities, regions,

states, and even countries. They are created and maintained by public authorities like national

and state mapping agencies as well as by cadastre institutions and private companies. The 3D

topography of urban and rural areas is essential for both visual exploration and a range of

different analyses in, for example, the urban planning, environmental, energy, transportation,

and facility management sectors.

3D city models are nowadays used as an integrative information backbone representing the

relevant urban entities along with their spatial, semantic, and visual properties. They are often

created and maintained with full coverage of entire cities and even countries, i.e. all real

world objects of a specific type like buildings, roads, trees, water bodies, and the terrain are

explicitly represented. In most cases the 3D city model objects have well-defined identifiers,

which are kept stable during the lifetime of the real world objects and their virtual

counterparts. Such complete 3D models are a good basis to organize different types of data

and sensors within Smart City projects as they build a stable platform for information linking

and enrichment.

In order to establish a common understanding and interpretation of the urban objects and to

achieve interoperable access and exchange of complete 3D models including the geometric,

topologic, visual, and semantic data, the Open Geospatial Consortium (OGC) has issued the

CityGML standard [Kolbe 2009]. CityGML defines a feature catalogue and data model for

the most relevant 3D topographic elements like buildings, bridges, tunnels, roads, railways,

vegetation, water bodies, etc. The data model is mapped to an XML-based exchange format

using OGC’s Geography Markup Language (GML).

The 3D City Database (3DCityDB) is a free Open Source package consisting of a database

schema and a set of software tools to import, manage, analyse, visualize, and export virtual

3D city models according to the CityGML standard. The database schema results from a

mapping of the object oriented data model of CityGML 2.0 to the relational structure of a

spatially-enhanced relational database management system (SRDBMS). The 3DCityDB

supports the commercial SRDBMS Oracle (with ‘Spatial’ or ‘Locator’ license options) and

the Open Source SRDBMS PostGIS (which is an extension to the free RDBMS PostgreSQL).

3DCityDB makes use of the specific representation and processing capabilities of the

SRDBMS regarding the spatial data elements. It can handle also very large models in multiple

levels of details consisting of millions of 3D objects with hundreds of millions of geometries

and texture images.

3DCityDB is in use in real life production systems in many places around the world and is

also being used in a number of research projects. For example, the cities of Berlin, Potsdam,

Munich, Frankfurt, Zurich, Rotterdam, Singapore all keep and manage their virtual 3D city

models within an instance of 3DCityDB. The companies virtualcitySYSTEMS (VCS) and

M.O.S.S., who are also partners in development, use 3DCityDB at the core of their

commercial products and services to create, maintain, visualize, transform, and export virtual

14 3D Geodatabase for CityGML 2019

3D city models (see Appendix B, Appendix C, and Appendix D for examples how and where

TUM, virtualcitySYSTEMS, and M.O.S.S. employ 3DCityDB in their projects). Furthermore,

the state mapping agencies of all 16 states in Germany store and manage the state-wide

collected 3D building models in CityGML LOD1 and LOD2 using 3DCityDB. In 2012 the

previous version of 3DCityDB and the developer team received the Oracle Spatial Excellence

Award, issued by Oracle USA.

Since 3DCityDB is based on CityGML, interoperable data access from user applications to

the database can be achieved in at least two ways:

1) by using the included high-performance CityGML Import/Export tool or the included

basic Web Feature Service 2.0 in order to exchange the data in CityGML format

(Version 2.0 or 1.0), and

2) by directly accessing the database tables whose relational structures are fully

explained in detail within this document. It is easy to enrich a 3D city model by

adding information to the database tables in some user application (using e.g. the

database APIs of programming language like C++, Java, Python, or of ETL tools like

the Feature Manipulation Engine from Safe Software). The enriched dataset then can

be exchanged or archived by exporting the city model to CityGML without

information loss. Analogously, 3DCityDB can be used to import a CityGML dataset

and then access and work with the city model by directly accessing the database tables

from some application programs or ETL software.

The Import/Export tool also provides functionalities for the direct export of 3D visualization

models in KML, COLLADA, and glTF formats. A tiling strategy is supported which allows

to visualize even very large 3D city and landscape models in geoinformation systems (GIS) or

digital virtual globes like Google Earth or CesiumJS Virtual Globe. The Import/Export tool

comes with an API to create further importers, exporters, and database administration tools.

One export plugin coming with the software installer package is the so-called ‘Spreadsheet

Generator Plugin’ (SPSHG) which allows to export thematic data of 3D objects into tables in

CSV and Microsoft Excel format that can be easily uploaded to and published as online

spreadsheets, for instance, within the Google Cloud. Starting from release 3.3.0, the

3DCityDB software package comes with the CesiumJS-based 3D viewer called “3DCityDB-

Web-Map-Client” which can link the 3D visualization models with online spreadsheets and

facilitates interactive visualization and exploration of 3D city models over the Internet within

web browsers on desktop and mobile computers. The most significant new functionality in

release 4.0.0 is the support of CityGML Application Domain Extensions (ADEs). ADEs

extend the CityGML datamodel by domain specific object types, attributes, and relations.

This document describes the design and the components of the 3D City Database as well as

their usage for the new major release 4.0.0 which has been developed and implemented by the

three partners in development, namely the Chair of Geoinformatics at Technische Universität

München, virtualcitySYSTEMS, and M.O.S.S. The development is continuing the previous

work carried out at the Institute for Geodesy und Geoinformation Science (IGG) of the Berlin

University of Technology and the Institute for Cartography and Geoinformation (IKG) of the

University of Bonn.

3D Geodatabase for CityGML 2019 15

This document has been completely reworked, integrated, extended, and edited from the

previous 3DCityDB documentations (version 3.3.0, version 2.0.1, and the documentation

addendum on 3DCityDB version 2.1.0 and the Importer/Exporter tool version 1.6.0). Some

figures and texts are cited from the OpenGIS City Geography Markup Language (CityGML)

Encoding Standard, Version 2.0.0 [Gröger et al. 2012].

1.1 Main features of 3DCityDB

Many (but not all) of the features referring to object modelling and representation are implied

by following the CityGML standard 2.0.0 issued by the Open Geospatial Consortium.

 CityGML 2.0.0 and 1.0.0 compliant database: The implementation defines the

classes and relations for the most relevant topographic objects in cities and regional

models with respect to their geometrical, topological, semantical, and appearance

properties. Included are generalization hierarchies between thematic classes,

aggregations, relations between objects, and spatial properties. These thematic

information go beyond graphic exchange formats and allow to employ virtual 3D city

models for sophisticated analysis tasks in different application domains.

 Implementation on the basis of a spatially-enhanced relational database manage-

ment system (Oracle 10G R2 or higher with Spatial/Locator option; PostgreSQL

9.1 or higher with PostGIS extension 2.0 or higher): For the representation of all

vector and grid geometry the built-in data types provided by the SRDBMS are used

exclusively. This way, special solutions are avoided and different geoinformation

systems, CAD/BIM systems, and ETL software systems can directly access (read and

write) the geometry objects stored in the SRDBMS.

 Support for CityGML Application Domain Extensions (ADEs): Semantic 3D city

models are employed for many different applications from diverse domains like

energetic, environmental, driving, and traffic simulations, as-built building infor-

mation modeling (as-built BIM), asset management, and urban information fusion. In

order to store and exchange application specific data aligned and integrated with the

3D city objects, the CityGML datamodel can be extended by new feature types,

attributes, and relations using the CityGML ADE mechanism. ADEs are specified as

(partial) GML application schemas using the modeling language XML Schema.

Starting from release 4.0.0 the 3DCityDB database schema can be dynamically

extended by arbitrary ADEs like the Energy ADE, UtilityNetwork ADE, Dynamizer

ADE, or national CityGML extensions like IMGeo3D (from The Netherlands). Since

ADEs can define an arbitrary number of new elements with all types and numbers of

spatial properties, a transformation method has been developed to automatically derive

the relational database schemas for arbitrary ADEs from the ADE XML schema files.

Since we intended to follow similar rules in the mapping of the object-oriented ADE

models onto relational models as we used for the (manual) mapping of the CityGML

datamodel onto the 3DCityDB core schema, the Chair of Geoinformatics at TUM

developed a new transformation method based on graph transformation systems. This

16 3D Geodatabase for CityGML 2019

method is described in detail in [Yao & Kolbe 2017] and is implemented within the

“ADE Manager” plugin for the Importer/Exporter software tool. It performs a

sophisticated analysis of the XML schema files of an ADE, the automatic derivation

of additional relational table structures, and the registration of the ADE within the

3DCityDB. Furthermore, SQL scripts are generated for each ADE for e.g. the deletion

of ADE objects and attributes from the database. Please note that in order to support

also the import and export of CityGML datasets with ADE contents, a Java library for

the specific ADE has to be implemented. This library has to perform the handling of

the CityGML ADE XML elements and the reading from and writing into the

respective ADE database tables using JDBC and SQL. An example how to develop

such a Java library is given for a Test ADE in the 3DCityDB github repository1.

 Tool for importing and exporting CityGML data: The included Importer/Exporter

software tool allows for high performance importing and exporting of CityGML

datasets according to CityGML versions 2.0 and 1.0. The tool allows processing of

very large datasets (>> 4 GB), even if they include XLinks between CityGML features

or XLinks to 3D GML geometry objects. The multi-threaded programming exploits

multiprocessor systems or multikernel CPUs to speed up the processing of complex

XML-structures, resulting in high performance database access. Objects can be

filtered during import or export according to spatial regions (bounding box), their

object IDs, feature types, names, and levels of detail. Bounding boxes can be

interactively selected using a map window based on OpenStreetMap (OSM). A tiling

strategy is implemented in order to support the export of very large datasets. In case of

a very high number of texture images they can be automatically distributed in a

configurable number of subdirectories in order to avoid large directories with millions

of files which can render a Microsoft Windows operating systems unresponsive. The

Importer can also validate CityGML files and can be configured to only import valid

features. It considers CityGML ADE contents, if the ADEs have been registered in the

database and specific Java libraries for reading/writing the ADE contents from/into the

ADE database tables is provided (see above). The Importer/Exporter tool can be run in

interactive or batch mode.

 Tool for exporting visualization models in KML, COLLADA, and glTF formats:

This tool exports city models from the 3D city database in KML, COLLADA, and

glTF formats which can directly be viewed and interactively explored in

geoinformation systems (GIS) or digital virtual globes like Google Earth or Cesium

WebGL Virtual Globe. A tiling strategy is supported where only tiles in the vicinity of

the viewer’s location are being loaded facilitating the visualization of even very large

3D city and landscape models. Information balloons for all objects can be configured

by the user. The exported models are especially suited to be visualized using the

3DCityDB-Web-Map-Client (see below), an Open Source 3D web viewer that is

based on the CesiumJS Webglobe framework with many functional extensions.

1 https://github.com/3dcitydb/extension-test-ade

https://github.com/3dcitydb/extension-test-ade

3D Geodatabase for CityGML 2019 17

 Tool for exporting data to spreadsheets: The ‘Spreadsheet Generator’ (SPSHG)

allows exporting thematic data of 3D objects into tables in CSV and Microsoft Excel

format which can be uploaded to a Google Spreadsheet within the Google Document

Cloud. For every selected geoobject one row is being exported where the first column

always contains the GMLID value of the respective object. The further columns can

be selected by the user. This tool can be used to export attribute data from e.g.

buildings like the class, function, usage, roof type, address, and further generic

attributes that may contain information like the building energy demand, potential

solar energy gain, noise level on the facades etc. The spreadsheet rows can be linked

to the visualization model generated by the KML/COLLADA/glTF Exporter. This is

illustrated in Appendix B.

 Tool for 3D visualization and interactive exploration of 3D models on the web:

The ‘3DCityDB-Web-Map-Client’ is a WebGL-based 3D web viewer which extends

the Cesium Virtual Globe to support efficient displaying, caching, prefetching,

dynamic loading and unloading of arbitrarily large pre-styled 3D visualization models

in the form of tiled KML/glTF datasets generated by the KML/COLLADA/glTF

Exporter. It provides an intuitive user interface to facilitate rich interaction with 3D

visualization models by means of the enhanced functionalities like highlighting the

objects of interests on mouseover and mouseclick as well as hiding, showing, and

shadowing them. Moreover, the 3DCityDB-Web-Map-Client is able to link the 3D

visualization model with an online spreadsheet (Google Fusion Table) in the Google

Cloud and allows viewing and querying the thematic data of every city object

according to its GMLID. For details see also [Chaturvedi et al. 2015, Yao et al. 2016].

 Web Feature Service (WFS) 2.0: The 3DCityDB comes with an OGC compliant

implementation of a basic WFS 2.0 allowing web-based access to the 3D city objects

stored in the database. WFS clients can directly connect to this interface and retrieve

3D content for a wide variety of purposes. The implementation currently satisfies the

Simple WFS conformance class. The WFS considers CityGML ADE contents, if the

ADEs have been registered in the database and specific Java libraries for reading/

writing the ADE contents from/into the ADE database tables is provided (see above).

An implementation of a full, transactional WFS is commercially available from one of

the development partners, see Appendix C.

 Support of different kinds of multi-representations: Levels of detail, different

appearances, (and with Oracle RDBMS only) planning versions and history:

Every geoobject as well as the DTM can be represented in five different resolution or

fidelity steps (Levels of Detail, LOD). With increasing LOD, objects do not only

obtain a more precise and finer geometry, but do also gain a thematic refinement.

Different appearance data may be stored for each city object. Appearance relates to

any surface-based theme, e.g. infrared radiation or noise pollution, not just visual

properties. Consequently, data provided by appearances can be used as input for both

presentation and analysis of virtual 3D city models. The database supports feature

18 3D Geodatabase for CityGML 2019

appearances for an arbitrary number of themes per city model. Each LOD of a feature

can have individual appearances. Appearances can represent – among others – textures

and georeferenced textures. All texture images can be stored in the database.

The version and history management employs Oracle’s Workspace Manager and,

hence, is only available for 3DCityDB instances running on an Oracle RDBMS. It is

largely transparent to application programs that work with the database. Procedures

saved within the database (Stored Procedures) are provided, which allow for the

management of planning alternatives and versions via application programs.

 Complex digital terrain models: DTMs may be represented in four different ways in

CityGML and therefore also in the 3D city database: regular grids, triangular irregular

networks (TINs), 3D mass points and 3D break lines. For every level of detail, a

complex DTM consisting of any number of DTM components and DTM types can be

defined. Besides, it is possible to combine certain kinds of DTM representations for

the same geographic area with each other (e.g. mass points and break lines or grids

and break lines). In Oracle Spatial (but not Locator) Grid-based DTMs may be of

arbitrary size and are composed from separate tiles to a single overall grid using the

Oracle GeoRaster functionality. Please note that the Import/Export tool provides

functions to read and write TIN, mass point, and break line DTM components, but not

for raster based DTMs. GeoRaster data would have to be imported and exported using

other tools from e.g. Oracle, ESRI, or Safe Software.

 Complex city object modelling: The representation of city objects in the 3D city

database ranges from coarse models to geometrically and semantically fine grained

structures. The underlying data model is a complete realization of the CityGML data

model for the levels of detail (LOD) 0 to 4. For example, buildings can be represented

by simple, monolithic objects or can consist of an aggregation of building parts.

Extensions of buildings, like balconies and stairs, can be classified thematically and

provided with attributes just as single surfaces can be. LOD4 completes a LOD3

model by adding interior structures for 3D objects. For example, LOD4 buildings are

composed of rooms, interior doors, stairs, and furniture. This allows among other

things to select the floor space of a building, so that it can later be used e.g. to derive

SmartBuildings or to form 3D solids by extrusion [Döllner et al. 2005]. Buildings can

be assigned addresses that are also stored in the 3D city database. Their implemen-

tation refers to the OASIS xAL Standard, which maps the address formats of the

different countries into a unified XML schema. In order to model whole complexes of

buildings, single buildings can be aggregated to form special building groups. The

same complex modelling applies to the other CityGML feature types like bridges,

tunnels, transportation and vegetation objects, and water bodies.

 Representation of generic and prototypical 3D objects: Generic objects enable the

storage of 3D geoobjects that are not explicitly modelled in CityGML yet, for example

dams or city walls, or that are available in a proprietary file format only. This way,

files from other software systems like architecture or computer graphics programs can

3D Geodatabase for CityGML 2019 19

be imported directly into the database (without interpretation). However, application

systems that would like to use these data must be able to interpret the corresponding

file formats after retrieving them back from the 3D geodatabase.

Prototypical objects are used for memory-efficient management of objects that occur

frequently in the city model and that do not differ with respect to geometry and

appearance. Examples are elements of street furniture like lanterns, road signs or

benches as well as vegetation objects like shrubs, certain tree types etc. Every instance

of a prototypical object is represented by a reference to the prototype, a base point and

a transformation matrix for scaling, rotating and translating the prototype.

The geometries (and appearances like textures, colors etc.) of generic objects as well

as prototypes can be stored either using the geometry datatype of the spatial database

management system (Oracle Spatial/Locator or PostGIS) or in proprietary file formats.

In the latter case a single file may be saved for every object, but the file type (MIME

type), the coordinate transformation matrix that is needed to integrate the object into

the world coordinate reference system (CRS) and the target CRS have to be specified.

 Extendable object attribution: All objects in the 3D geodatabase can be augmented

with an arbitrary number of additional generic attributes. This way, it is possible to

add further thematic information as well as further spatial properties to the objects at

any time. In combination with the concept of generic 3D objects this provides a highly

flexible storage option for object types which are not explicitly defined in the

CityGML standard. Every generic attribute consists of a triple of attribute name, data

type, and value. Supported data types are: string; integer and floating-point numbers;

date; time; binary object (BLOB, e.g. for storing a file); geometry object according to

the specific geometry data type of Oracle or PostGIS respectively; simple, composite,

or aggregate 3D solids or surfaces. Please note that generic attributes of type BLOB or

geometry are not allowed as generic attributes in CityGML (and will, thus, not be

exported by the CityGML exporter). However, it may be useful to store binary data

associated with the individual city objects, for example, to store derived 3D computer

graphics representations.

 Free, also recursive grouping of geoobjects: Geoobjects can be grouped arbitrarily.

The aggregates can be named and may also be provided with an arbitrary number of

generic attributes (see above). Object groups may also contain object groups, which

leads to nested aggregations of arbitrary depth. In addition, for every object of an

aggregation, its role in the group can be specified explicitly (qualified association).

 External references for all geoobjects: All geoobjects can be provided with an

arbitrary number of references to corresponding objects in external data sources (i.e.

hyperlinks / linked data). For example, in case of building objects this allows to store

e.g. the IDs of the corresponding objects in official cadasters, digital landscape models

(DLM), or Building Information Models (BIM). Each reference consists of an URI to

the external data store or database and the corresponding object ID or URI within that

external data store or database.

20 3D Geodatabase for CityGML 2019

 Flexible 3D geometries: The geometry of most 3D objects can be represented through

the combination of solids and surfaces as well as any - also recursive - aggregation of

these elements. Each surface may has attached different textures and colors on both its

front and back face. It may also comprise information on transparency. Additional

geometry types (any geometry type supported by the spatial database management

system Oracle Spatial/Locator or PostGIS) can be added to the geoobjects by using

generic attributes.

 Open Source and Platform Independence: The entire software is freely accessible

to the interested public. The 3DCityDB is licensed under the Apache License, Version

2.0, which allows including 3DCityDB in commercial systems. You may obtain a

copy of the Apache License at http://www.apache.org/licenses/LICENSE-2.0. Both

the Importer/Exporter tool and the Web Feature Service are implemented in Java and

can be run on different platforms and operating systems.

 Docker support: We now provide Docker images for 1) a complete 3DCityDB

installation pre-installed within a PostGIS SRDBMS, 2) a webserver with an installed

3DCityDB-Web-Map-Client, 3) a 3DCityDB WFS. We also provide a Docker-

compose script to launch all three Docker containers in a linked way with just a single

command. Details are given in Section 9 and in the respective github repositories2.

Docker is a runtime environment for virtualization. Docker encapsulates individual

software applications in so-called containers, which are – in contrast to virtual

machines – light-weight and can be deployed, started and stopped very quickly and

easily. Using our Docker images a 3DCityDB can be installed by a single command.

1.2 System and design decisions

The 3D City Database is implemented as a relational database schema using the spatial

datatypes provided by a spatially-enhanced relational database management system

(SRDBMS). Above, external software applications and database stored procedures are

provided working on this database schema. Since only Oracle with the Spatial or Locator

licensing option (10G R2 or higher) and PostgreSQL (9.3 or higher) with PostGIS extension

(2.0 or higher) offer comprehensive support for 3D spatial data, the 3D City Database schema

is being provided for these two systems only.

In addition to the general advantages arising from the usage of a widely used relational

database management system (RDBMS), both Oracle Spatial/Locator and PostgreSQL/

PostGIS offer some important performance characteristics that allow an efficient implemen-

tation of the required functionalities:

 Both RDBMS support spatial data types with coordinates ranging from 2D to 4D.

Spatial indexes and filters can be 2D or 3D allowing for efficient spatial selections in

very large city models. Furthermore, the spatial data types are supported by a number

2 https://github.com/tum-gis

https://github.com/tum-gis

3D Geodatabase for CityGML 2019 21

of commercial and Open Source GIS that provide a database connection as for

example ESRI’s ArcGIS/ArcSDE or Safe Software’s Feature Manipulation Engine

(FME). This enables such systems to directly access the data stored in the 3D

geodatabase.

 Rules can be implemented using stored procedures and trigger mechanisms which

propagate updates of objects to likewise affected objects in the database (transparent

for the user).

The data model of the 3D City Database is based on the CityGML 2.0 standard. The object-

oriented data model of CityGML has been mapped to a purely relational data model with the

exception that geometry objects are mapped to the spatial datatypes provided by the SDBMS.

In order to achieve high performance for data manipulations and queries the mapping was

done manually with a number of optimizations. A few simplifying assumptions where made

regarding the usage of the CityGML concepts in the real world helping to increase

performance. These are documented in chapter 2.1.

Surface-based geometries like Polygons, TINs, MultiSurfaces as well as Solids are stored in a

special way: they are decomposed into their primitive surfaces and each surface is stored as an

individual tuple in one big surface table. The reason for this is that each surface can be

assigned multiple appearances (e.g. textures) in CityGML and, thus, each appearance must be

explicitly linkable to the corresponding surface. For Solids also the solid geometry objects are

stored in addition to their decomposed boundary surfaces allowing to apply spatial operations

on them like the computation of the volume.

The provided software tools like the Importer/Exporter application are implemented in the

Java language in order to be platform independent. The tools have been confirmed to run

under Microsoft Windows, Linux, and Apple Mac OS X. High performance is achieved by

exploiting multi-threading on multiprocessor or multi-core CPU systems.

1.3 List of changes between software versions

 Notable changes between 4.0 and 3.3

New features and functionalities:

 Importer/Exporter 4.2: Reworked Plugin API to support non-GUI plugins.

 Importer/Exporter 4.2: Property projections can now also be defined for abstract

feature types.

 Importer/Exporter 4.1: Added support for using SQL and XML queries for CityGML

exports to be able express more flexible and complex filter conditions

 Importer/Exporter 4.1: Added support for importing CityGML data from (G)ZIP files

and exporting CityGML content to (G)ZIP files

 Importer/Exporter 4.1: OSM Nominatim is now used as default geocoder for the map

window. Google Map API services can still be used for the map window and for

KML/COLLADA exports but require an API key.

22 3D Geodatabase for CityGML 2019

 Management and storage of arbitrary CityGML ADEs with the 3DCityDB, the

Importer/Exporter ADE Manager Plugin and the 3DCityDB WFS

 New 3DCityDB Docker images to support continuous integration workflows

 New metadata tables ADE, SCHEMA, SCHEMA_REFERENCING and

SCHEMA_TO_OBJECTCLASS for registering CityGML ADEs

 New prefilled metadata table AGGREGATION_INFO that supports the automatic

generation of DELETE and ENVELOPE scripts

 New function to create entries in USER_SDO_GEOM_METADATA view (Oracle)

 Function objectclass_id_to_table_name now has a counterpart:

table_name_to_objectclass_ids returning an array of objectclass ids

(CITYDB_OBJCLASS package in Oracle, part of a data schema in PostgreSQL)

 New database procedures to enable/disable foreign key constraints to speed up bulk

write operations (CITYDB_CONSTRAINT package in Oracle, part of the

citydb_pkg schema in PostgreSQL)

 New SQL script to create additional data schemas in one database (PostgreSQL)

 New shell and SQL scripts to grant read-only or full read-write access to another

schema.

 Importer/Exporter can connect to different database schemas with the same user

 Enabling XSL transformations on CityGML imports and exports as well as WFS

responses

 New database operation panel to change the spatial reference system used in the

database (incl. optional coordinate transformation)

 New LoD filter for CityGML exports

 3DCityDB WFS allows for exporting into the CityJSON format

Improved and updated features and functionalities:

 Moved interactive prompts from SQL to batch/shell scripts for better setup automation

 Added OBJECTCLASS_ID column to all feature tables to distinguish objects from

CityGML ADEs. Also extended OBJECTCLASS table by more feature-specific

details and inserted new entries for feature properties such as geometry, generic

attributes etc.

 Improved performance on stored procedures by reducing amount of dynamic SQL.

Therefore, schema_name parameter has been removed from DELETE and ENVELOPE

scripts. Under PostgreSQL these scripts (as well as the INDEX_TABLE) are now part

of a data schema such as citydb.

 DELETE and ENVELOPE are now generated automatically in order to deal with

schema changes introduced by ADEs. Therefore, the function prefix has been

shortened to del_ and env_ not hit the character limit under Oracle,

 The CITYDB_DELETE_BY_LINEAGE package has been removed. The only

function left is del_cityobjects_by_lineage which is now part of the

DELETE package

 Database migration scripts for version 2.1.0 or version 3.3.0 to version 4.0.0

3D Geodatabase for CityGML 2019 23

 Switching from Ant to Gradle as the new build system for the Importer/Exporter tools

 Allow import of CityGML files with flat hierarchies between city objects

 Added support for importing gml:MultiGeometry objects containing only polygons

 Added support for exporting to glTF v2.0

 3DCityDB WFS now supports CORS and provides a KVP over HTTP GET endpoint

for every operation simplifying the integration with GIS and ETL software such as

FME

1.4 Development history

The development of the 3D City Database was always closely related to the development of

the CityGML standard [Kolbe & Gröger 2003]. It was started back in 2003 by Dr. Kolbe and

Prof. Plümer at the Institute for Cartography and Geoinformation at University of Bonn. In

the period from November 2003 to December 2005 the official virtual 3D city model of

Berlin, commissioned by The Berlin Senate and Berlin Partner GmbH, was developed within

a pilot project funded by the European Union [Plümer et al. 2005, Berlin 3D]. Since then, the

model has been playing a central role in the three-dimensional spatial data infrastructure of

Berlin and opened up a multitude of applications for the public and private sector alike. As an

example the virtual city model is successfully used for presentation of the business location,

its urban development combined with application related information to politicians, investors,

and the public in order to support civic participation, provide access to decision-making

content, assist in policy-formulation, and control implementation processes [Döllner et al.

2006]. 3DCityDB was key in demonstrating the real world usage of CityGML to the Open

Geospatial Consortium on the one hand, and the practical usability and versatility of

CityGML to the city of Berlin on the other hand. This first development phase was carried out

by University of Bonn in collaboration with the company lat/lon GmbH. Oracle Spatial was

the only supported SDBMS in that phase and the next (3DCityDB Versions 0.2 up to 1.3).

Within the framework Europäische Fonds für regionale Entwicklung (EFRE II) the project

Geodatenmanagement in der Berliner Verwaltung – Amtliches 3D-Stadtmodell für Berlin

allowed for upgrading the official 3D city model based on the former CityGML specification

draft 0.4.0 in the year 2007. The developments were carried out by the Institute for Geodesy

und Geoinformation Science (IGG) of the Berlin University of Technology (where Kolbe

became full professor for Geoinformation Science in 2006) on behalf of the Berliner

Senatsverwaltung für Wirtschaft, Arbeit und Frauen and the Berlin Partner GmbH (former

Wirtschaftsförderung Berlin International). The relational database model (3DCityDB

versions 1.4 up to 1.8) was implemented and evaluated in cooperation with 3DGeo GmbH

(later bought by Autodesk GmbH) in Potsdam. A special database interface for LandXPlorer

was provided by 3DGeo / Autodesk. Later on, a first version of the Java based CityGML

Importer/Exporter was developed [Stadler et al. 2009].

In August 2008, CityGML 1.0.0 became an adopted standard of the Open Geospatial

Consortium (OGC). In the follow-up project Digitaler Gestaltplan Potsdam starting in 2010

the 3DCityDB version 2 was developed which brought support for all CityGML 1.0.0 feature

types. The KML/COLLADA exporter was added as well as a ‘Matching’ plugin. This project

24 3D Geodatabase for CityGML 2019

was carried out by IGG of TU Berlin on behalf of and in collaboration with the company

virtualcitySYSTEMS (VCS) in Berlin. In 2012 the developer team at TU Berlin received the

Oracle Spatial Excellence Award for Education and Research from Oracle USA for our work

on 3DCityDB. Also in 2012 3DCityDB was ported to PostgreSQL/PostGIS by Felix Kunde, a

master student from the University of Potsdam, who did his master thesis in collaboration

with IGG [Kunde 2013].

In August 2012, CityGML 2.0.0 became an adopted standard of the Open Geospatial Consor-

tium (OGC). In September 2012, Prof. Kolbe moved from IGG, TU Berlin to the Chair of

Geoinformatics at Technische Universität München (TUM). The companies virtualcity-

SYSTEMS GmbH in Berlin and M.O.S.S. Computer Grafik Systeme GmbH in Taufkirchen

(near Munich) have also been using the 3D City Database in their commercial projects for a

number of years. In this context, the Chair of Geoinformatics at TUM and the companies

virtualcitySYSTEMS and M.O.S.S. signed an official collaboration agreement on the joint

further development of 3DCityDB and its tools. The work on the new major release version

3.0.0 began in 2013 when Dr. Nagel finished his PhD and joined the company VCS. In

Version 3.3.0 the new 3D web client was being added. The webclient was developed by

Zhihang Yao with contributions from Kanishk Chaturvedi and Son Nguyen. In 2015 Zhihang

Yao and Kanishk Chaturvedi were awarded the first price in the 'Best Students Contribution'

of the 'Web3D city modeling competition' under the annual ACM SIGGRAPH Web3D

Conference for the 3DCityDB-Web-Map-Client.

The work on version 4.0.0 – especially the support of CityGML ADEs – began in 2015 in the

course of the PhD work of Zhihang Yao. One part of his PhD thesis is focusing on the model

transformation of CityGML ADEs onto spatial relational databases using pattern matching

and graph transformation rules. Support of CityGML ADEs in the Importer/Exporter required

a substantial rewriting of the citygml4j Java library, the Importer/Exporter and WFS source

code performed by Dr. Nagel starting from 2016. Felix Kunde worked, among others, on

performance improvements and restructuring of the PL/(pg)SQL scripts. Son Nguyen added

support for mobile devices in the 3DCityDB-Web-Map-Client in 2017. Docker support was

added by Bruno Willenborg in 2018. Starting from 2017 all partners worked on updating

diverse functionalities, scripts, documentation, and on testing.

1.5 Acknowledgements

The 3D City Database project team is grateful and appreciative for the financial assistance

and support we received from partners that contributed to the development of version 4.0 and

the work on the ADE support.

Government Technology Agency of Singapore

The Government Technology Agency of Singapore (GovTech Singapore) has been

developing a 3D city standard for Singapore based on CityGML, to establish a common 3D

representation of the city-state. GovTech wanted to extend the representation to include other

city features through the ADE approach, and had worked with virtualcitySYSTEMS GmbH to

start the development of the ADE support on 3DCityDB. The intent is to open source the

3D Geodatabase for CityGML 2019 25

3DCityDB ADE support to the international community, so as to encourage wider adoption

and implementation of the CityGML standard and ADEs.

CADFEM International GmbH

Founded in 1985, CADFEM is one of the pioneers of numerical simulation based on the

Finite Element Method and one of the largest European suppliers of Computer-Aided

Engineering. Through the Leonard Obermeyer Center of the Technical University Munich,

CADFEM supports the research on digital methods for the design, creation and maintenance

of the built environment and the work on the 3D City Database. Bridging the gap between

simulation systems and 3D GIS / BIM is a key requirement for enabling multi-physics Urban

Simulations and for building Digital Twins of the urban space. The CityGML ADE

mechanism supports this in two ways: 1) city features can be enriched with data that is

relevant for simulations, and 2) simulation results can be brought back into the city model,

turning it into a dynamic knowledge base. CADFEM is supporting the 3D City Database

project to leverage the adoption and usage of CityGML ADEs in the field of Urban

Simulations.

Climate-KIC of the EIT

Climate-KIC is a so-called ‘Knowledge and Innovation Community’ about Climate Change

and Mitigation. It is one of three Knowledge and Innovation Communities (KICs) created in

2010 by the European Institute of Innovation and Technology (EIT). The EIT is an EU body

whose mission is to create sustainable growth. Most 3DCityDB developments at TU Munich

were done in the context of the projects Energy Atlas Berlin, Modeling City Systems (MCS),

Smart Sustainable Districts (SSD), and Smart District Data Infrastructure (SDDI), all

financially supported by Climate-KIC.

26 3D Geodatabase for CityGML 2019

3D Geodatabase for CityGML 2019 27

2 Data Modelling and Database Design

In this section the slightly simplified data model with respect to CityGML is described at the

conceptual level using UML class diagrams. These diagrams form the basis for the

implementation-dependent realization of the model with a relational database system which is

presented in section 2.3. However, UML diagrams may also form the basis for other

implementations e.g. for the definition of an exchange format based on XML or GML. The

UML diagrams of the 3D city model are depicted in section 2.2.

2.1 Simplification compared to CityGML 2.0.0

CityGML is a common information model for 3D urban objects and provides a

comprehensive and extensible representation of the objects. It is explained in detail in the

CityGML specification [Gröger et al. 2008, Gröger et al. 2012] and [Kolbe 2009]. An analysis

of the previous versions of the 3D City Database indicated that for the data collected and

processed a less complex schema is sufficient. Using a simplified schema usually allows

improving system performance. Therefore, the first task was related to database design

aspects with respect to adjusting the comprehensive CityGML features. As result a simplified

database schema was generated, allowing an optimized workflow and guaranteeing efficient

processing time. The related UML-diagrams were discussed and coordinated with the project

partners and translated into the relational schema. Based on this work the SQL scripts for

setting up the Oracle and PostgreSQL database schema were generated. Please note, that all

test CityGML datasets (versions 1.0.0 and 2.0.0) from the CityGML homepage (and others)

can be stored and managed without restrictions with this simplified database schema.

 Multiplicities, cardinalities and recursions

Simplifications with respect to the CityGML specification were made as follows:

 Multiplicities of attributes

Attributes with a variable amount of occurrences (*) are substituted by a data type

enabling the storage of arbitrary values (e.g. data type String with a predefined

separator) or by an array with a predefined amount of elements representing the

number of objects that participate in the association. This means that object attributes

can be stored in a single column.

 Cardinalities and types of relationships

n:m relations require an additional table in the database. This table consists of the

primary keys of both elements’ tables which form a composite primary key. If the

relation can be restricted to a 1:n or n:1 relationship the additional table can be

avoided. Therefore, all n:m relations in CityGML were checked for a more restrictive

definition. This results in simplified cardinalities and relations.

 Simplified treatment of recursions

Some recursive relations are used in the CityGML data model. Recursive database

queries may cause high cost, especially if the amount of recursive steps is unknown. In

order to guarantee good performance, implementation of recursive associations

receive two additional columns which contain the ID of the parent and of the root

28 3D Geodatabase for CityGML 2019

element. For example, if all building parts related to a specific building are queried,

only those tuples containing the ID of the building as root element have to be selected.

Thus, typical queries concerning object geometry remain high-performance.

 Data type adaptation
Data types specified in CityGML were substituted by data types which allow an effective

representation in the database. Strings for example are used to represent code types and

number vectors; GML geometry types were changed to the database geometry data type.

Matrices are stored each one as String data type, with values listed in a row-major sequence

separated by spaces.

 Project specific classes and class attributes

The 3D city database may contain some classes for representation of project specific

metadata, version control and attributes for representation of additional project specific

information. Since this information is represented in the CityGML specification differently or

even not at all, appropriate classes and class attributes are added or respectively adopted.

 Simplified design of GML geometry classes

Spatial properties of features are represented by objects of GML3’s geometry model based on

the ISO 19107 standard ‘Spatial Schema’ [Herring 2001], representing 3D geometry

according to the well-known Boundary Representation (B-Rep, cf. [Foley et al. 1995]).

Actually only a subset of the GML3 geometry package is used. Moreover, for 2D and 3D

surface-based geometry types a simpler but equally powerful model is used: These geometries

are stored as polygons, which are aggregated to MultiSurfaces, CompositeSurfaces,

TriangulatedSurfaces, Solids, MultiSolids, as well as CompositeSolids.

2.2 UML class diagram

The following pages cite several parts of the CityGML specification [Gröger et al., 2012]

which are necessary for a better understanding. Main focus is put on explaining the

customization and the differences to the CityGML standard.

Design decisions in the model are explicitly visualised within the UML diagrams. Following

models are presented in detail:

 Geometric-topological model

 Appearance model

 Thematic Model

o CityGML Core

o Building model

o Bridge model

o City furniture

o Digital Terrain Model

o Generic objects and attributes

o Land use

o Transportation objects

3D Geodatabase for CityGML 2019 29

o Tunnel model

o Water bodies

o Vegetation objects

For intuitive understanding, classes which will be merged to a single table in the relational

schema, are shown as orange blocks in the UML diagrams. n:m relations, which only can be

represented by additional tables, are represented as green blocks.

 Geometric-topological Model

The geometry model of CityGML consists of primitives, which may be combined to form

complexes, composite geometries or aggregates. A zero-dimensional object is modelled as a

Point, a one-dimensional as a _Curve. A curve is restricted to be a straight line, thus only the

GML3 class LineString is used.

Combined geometries can be aggregates, complexes or composites of primitives (see

illustration in figure 1). In an Aggregate, the spatial relationship between components is not

restricted. They may be disjoint, overlapping, touching, or disconnected. GML3 provides a

special aggregate for each dimension, a MultiPoint, a MultiCurve, a MultiSurface or a

MultiSolid. In contrast to aggregates, a Complex is topologically structured: its parts must be

disjoint, must not overlap and are allowed to touch, at most, at their boundaries or share parts

of their boundaries. A Composite is a special complex provided by GML3. It can only contain

elements of the same dimension. Its elements must be disjoint as well, but they must be

topologically connected along their boundaries. A Composite can be a CompositeSolid, a

CompositeSurface, or CompositeCurve.

MultiSurface GeometricComplex CompositeSurface

Figure 1: Different types of aggregated geometries [Gröger et al., 2012]

The modelling of two-dimensional and three-dimensional geometry types is handled in a

simplified way. All surface-based geometries are stored as polygons, which are aggregated to

MultiSurfaces, CompositeSurfaces, TriangulatedSurfaces, Solids, MultiSolids, as well as

CompositeSolids accordingly. This simplification substitutes the more complex representation

used for those GML geometry classes in grey blocks in Figure 2. Mapping the UML diagram

to the relational schema now requires only one table (SURFACE_GEOMETRY), which is

explained in chapter 2.3.3.3.

30 3D Geodatabase for CityGML 2019

Figure 2: Geometrical-topographical model.

For simplification the geometry classes in the grey block are substituted by the construct in the orange block

In order to implement topology, CityGML uses the XML concept of XLinks provided by

GML. Each geometry object that should be shared by different geometric aggregates or

different thematic features is assigned a unique identifier, which may be referenced by a GML

geometry property using a href attribute. The XLink topology is simple and flexible and

nearly as powerful as the explicit GML3 topology model. However, a disadvantage of the

XLink topology is that navigation between topologically connected objects can only be

performed in one direction (from an aggregate to its components), not (immediately)

bidirectional, as it is the case for GML’s built-in topology.

 Implicit Geometry

The concept of implicit geometries is an enhancement of the GML3 geometry model.

An implicit geometry is a geometric object, where the shape is stored only once as a

prototypical geometry, for example a tree or other vegetation objects, a traffic light or traffic

sign. This prototypic geometry object is re-used or referenced many times, wherever the

3D Geodatabase for CityGML 2019 31

corresponding feature occurs in the 3D city model. Each occurrence is represented by a link to

the prototypic shape geometry (in a local Cartesian coordinate system), by a transformation

matrix that is multiplied with each 3D coordinate of the prototype, and by an anchor point

denoting the base point of the object in the world coordinate reference system. The concept of

implicit geometries is similar to the well-known concept of primitive instancing used for the

representation of scene graphs in the field of computer graphics [Foley et al. 1995].

Figure 3: Implicit Geometry model

Implicit geometries may be applied to features from different thematic fields in order to

geometrically represent the features within a specific level of detail (LOD). Thus, each

CityGML thematic extension module (like Building, Bridge, and Tunnel etc.) may define

spatial properties providing implicit geometries for its thematic classes.

The shape of an implicit geometry can be represented in an external file with a proprietary

format, e.g. a VRML file, a DXF file, or a 3D Studio MAX file. The reference to the implicit

geometry can be specified by an URI pointing to a local or remote file, or even to an

appropriate web service. Alternatively, a GML3 geometry object can define the shape. This

has the advantage that it can be stored or exchanged inline within the CityGML dataset.

Typically, the shape of the geometry is defined in a local coordinate system where the origin

lies within or near to the object’s extent. If the shape is referenced by an URI, also the MIME

type of the denoted object has to be specified (e.g. “model/vrml” for VRML models or

“model/x3d+xml” for X3D models).

The implicit representation of 3D object geometry has some advantages compared to the

explicit modelling, which represents the objects using absolute world coordinates. It is more

space-efficient, and thus more extensive scenes can be stored or handled by a system. The

visualization is accelerated since 3D graphics hardware supports the scene graph concept.

Furthermore, the usage of different shape versions of objects is facilitated, e.g. different

seasons, since only the library objects have to be exchanged.

 Appearance Model

Information about a surface’s appearance, i.e. observable properties of the surface, is

considered an integral part of virtual 3D city models in addition to semantics and geometry.

Appearance relates to any surface-based theme, e.g. infrared radiation or noise pollution, not

just visual properties and can be represented by – among others – textures and georeferenced

textures. Appearances are supported for an arbitrary number of themes per city model. Each

LoD of a feature can have individual appearances. Each city object or city model respectively

may store its own appearance data. Therefore, the base CityGML classes _CityObject and

CityModel contain a relation appearance and appearanceMember respectively.

32 3D Geodatabase for CityGML 2019

Figure 4: Appearance model

Themes are represented by an identifier only. The appearance of a city model for a given

theme is defined by a set of objects of class Appearance, referencing this theme through the

attribute theme. All appearance objects belonging to the same theme compose a virtual group.

An Appearance object collects surface data relevant for a specific theme through the relation

surfaceDataMember. Surface data is represented by objects of the abstract class

_SurfaceData. Its only attribute is the Boolean flag isFront, which determines the side (front

and back face of the surface) a surface data object applies to.

A constant surface property is modelled as material. A surface property, which depends on the

location within the surface, is modelled as texture. Each surface object can have both a

material and a texture per theme and side. This allows for providing both a constant

approximation and a complex measurement of a surface’s property simultaneously. If a

surface object is to receive multiple textures or materials, each texture or material requires a

separate theme. The mixing of themes or their usage is not explicitly defined but left to the

application.

3D Geodatabase for CityGML 2019 33

Materials define light reflection properties being constant for a whole surface object. The

definition of the class X3DMaterial is adopted from the X3D and COLLADA specification

(cf. X3D, COLLADA specification):

 diffuseColor defines the colour of diffusely reflected light.

 specularColor defines the colour of a directed reflection.

 emissiveColor is the colour of light generated by the surface.

All colours use RGB values with red, green, and blue chanels, each defined as value between

0 and 1. Transparency is stored separately using the transparency element where 0 stands for

fully opaque and 1 for fully transparent. ambientIntensity specifies the minimum percentage

of diffuseColor that is visible regardless of light sources. shininess controls the sharpness of

the specular highlight. 0 produces a soft glow while 1 results in a sharp highlight. isSmooth

gives a hint for normal interpolation. If this Boolean flag is set to true, vertex normals should

be used for shading (Gouraud shading). Otherwise, normals should be constant for a surface

patch (flat shading). Target surfaces are specified using target elements. Each element

contains the URI of one target surface geometry object.

The base class for textures is _AbstractTexture. Here, textures are always raster-based 2D

textures. The raster image is specified by imageURI using a URI and may contain an arbitrary

image data resource, even a preformatted request for a web service. The image data format

can be defined using standard MIME types in the mimeType element. Textures can be

qualified by the attribute textureType, differentiating between textures, which are specific for

a certain object (specific) and prototypic textures being typical for that object surface

(typical). Textures may also be classified as unknown. The specification of texture wrapping

is adopted from the COLLADA standard. Possible values of the attribute wrapMode are none,

wrap, mirror, clamp and border.

_AbstractTexture is further specialised according to the texture parameterisation, i.e. the

mapping function from a location on the surface to a location in the texture image. Texture

parameterisation uses the notion of texture space, where the texture image always occupies of

the region [0,1]² regardless of the actual image size or aspect ratio. The lower left image

corner is located at the origin. To receive textures, the mapping function must be known for

each surface object.

The class GeoreferencedTexture describes a texture that uses a planimetric projection. Such a

texture has a unique mapping function which is usually provided with the image file (e.g.

georeferenced TIFF) or as a separate ESRI world file. The search order for an external

georeference is determined by the Boolean flag preferWorldFile. Alternatively, inline

specification of a georeference similar to a world file is possible. This internal georeference

specification always takes precedence over any external georeference. referencePoint defines

the location of the centre of the upper left image pixel in world space and corresponds to

values 5 and 6 in an ESRI world file. Since GeoreferencedTexture uses a planimetric

projection, referencePoint is two-dimensional and the orientation defines the rotation and

scaling of the image in form of a 2x2 matrix (a list of 4 doubles in row-major order

corresponding to values 1, 3, 2, and 4 in an ESRI world file). The CRS of this transformation

is identical to the referencePoint’s CRS. If neither an internal nor an external georeference is

34 3D Geodatabase for CityGML 2019

given, the GeoreferencedTexture is invalid. Target surfaces are specified using target

elements. Each element contains the URI of one target surface geometry object. All target

surface objects share the mapping function defined by the georeference.

The class ParameterizedTexture describes a texture with a target-dependent mapping

function. Each target surface geometry object is specified as URI in the uri attribute of a

separate target element. The mapping is defined by associated classes of

_TextureParameterization:

 TexCoordList for the concept of texture coordinates, defining an explicit mapping of a

surface’s boundary points to points in texture space, and

 TexCoordGen when using a common 3x4 transformation matrix from world space to

texture space, specified by the attribute worldToTexture.

 Thematic model

The thematic model consists of the class definitions for the most important types of objects

within virtual 3D city models. Most thematic classes are (transitively) derived from the basic

classes Feature and FeatureCollection, the basic notions defined in ISO 19109 and GML3 for

the representation of features and their aggregations. Features contain spatial as well as non-

spatial attributes, which are mapped to GML3 feature properties with corresponding data

types. Geometric properties are represented as associations to the geometry classes described

in chapter 2.2.1 The thematic model also comprises different types of interrelationships

between Feature classes like aggregations, generalizations, and associations.

The aim of the explicit modelling is to reach a high degree of semantic interoperability

between different applications. By specifying the thematic concepts and their semantics along

with their mapping to UML and GML3, different applications can rely on a well-defined set

of Feature types, attributes, and data types with a standardised meaning or interpretation. In

order to allow also for the exchange of objects and/or attributes that are not explicitly

modelled in CityGML, the concepts of GenericCityObjects and GenericAttributes have been

introduced.

2.2.4.1 Core Model

The base class of all thematic classes within CityGML’s data model is the abstract class

_CityObject. _CityObject provides a creation and a termination date for the management of

histories of features as well as generic attributes and external references to corresponding

objects in other data sets. _CityObject is a subclass of the GML class Feature, thus it may

inherit multiple names from Feature, which may be optionally qualified by a codeSpace. This

enables the differentiation between, for example, an official name from a popular name or

names in different languages (c.f. the name property of GML objects, Cox et al., 2004). The

generalisation property generalizesTo of _CityObject may be used to relate features, which

represent the same real-world object in different LoD, i.e. a feature and its generalized

counterpart(s). The direction of this relation is from the feature to the corresponding

generalised feature.

3D Geodatabase for CityGML 2019 35

Features of _CityObject and its specialized subclasses may be aggregated to a CityModel,

which is a feature collection with optional metadata. Generally, each feature has the attributes

class, function, and usage, unless it is stated otherwise. The class attribute can occur only

once, while the attributes usage and function can be used multiple times. The class attribute

describes the classification of the objects, e.g. road, track, railway, or square. The attribute

function contains the purpose of the object, like national highway or county road, while the

attribute usage defines whether an object is e.g. navigable or usable for pedestrians. The

attributes class, function and usage are specified as gml:CodeType. The values of these

properties can be enumerated in code lists. Furthermore, for each feature the geographical

extent can be defined using the Envelope element. Minimum and maximum coordinate values

have to be assigned to opposite corners of the feature’s bounding box.

Figure 5: Core Model and thematic top level classes

The subclasses of _CityObject comprise the different thematic fields of a city model, in the

following covered by separate thematic models: building model (_AbstractBuilding), tunnel

model (_AbstractTunnel), bridge model (_AbstractBridge), city furniture model

(CiyFurniture), digital terrain model (ReliefFeature), land use model (LandUse),

transportation model (TransportationObject), vegetation model (_VegetationObject), water

bodies model (WaterObject) and generic city object model (GenericCityObject). The latter

one allows for the modelling of features, which are not explicitly covered by one of the other

models. The separation into these models strongly correlates with CityGML’s extension

modules, each defining a respective part of a virtual 3D city model.

36 3D Geodatabase for CityGML 2019

3D objects are often derived from or have relations to objects in other databases or data sets.

For example, a 3D building model may have been constructed from a two-dimensional

footprint in a cadastre data set. The reference of a 3D object to its corresponding object in an

external data set is essential, if an update must be propagated or if additional data is required

(like the name and address of a building’s owner in a cadastral information system). In order

to supply such information, each _CityObject may have External References to corresponding

objects in external data sets. Such a reference denotes the external information system and the

unique identifier of the object in this system.

CityObjectGroups aggregate CityObjects and furthermore are defined as special CityObjects.

This implies that a group may become a member of another group realizing a recursive

aggregation schema. Since CityObjectGroup is a feature, it has the optional attributes class,

function and usage. The class attribute allows a group classification with respect to the stated

function and may occur only once. The function attribute is intended to express the main

purpose of a group, possibly to which thematic area it belongs (e.g. site, building,

transportation, architecture, unknown etc.). The attribute usage can be used, if the object’s

usage differs from its function. The attributes class, function and usage are specified as

gml:CodeType. The values of these properties can be enumerated in code lists.

Each member of a group may be qualified by a role name, reflecting the role each CityObject

plays in the context of the group. Furthermore, a CityObjectGroup can optionally be assigned

an arbitrary geometry object. This may be used to represent a generalised geometry generated

from the member’s geometries. The parent association linking a CityObjectGroup to a

CityObject allows for the modelling of generic hierarchical groupings. This concept is used,

for example, to represent storeys in buildings. See Figure 5 for the simplified UML diagram.

2.2.4.2 Building model

Buildings can be represented in five levels of detail (LoD0 to LoD4). The building model

allows the representation of simple buildings that consist of only one component, as well as

the representation of complex relations between parts of a building, e.g. a building consisting

of three parts – a main house, a garage and an extension. The parts can again consist of parts

etc. The subclasses Building and BuildingPart of _AbstractBuilding enable these modelling

options.

Figure 6: Example of buildings consisting of one and two building parts [Gröger et al., 2008]

3D Geodatabase for CityGML 2019 37

In the case of a simple, one-piece house there is only one Building which inherits all attributes

and relations from _AbstractBuilding (cf. Fehler! Verweisquelle konnte nicht gefunden

werden.). However, such a Building can also comprise BuildingParts which likewise inherit

all properties from _AbstractBuilding: the building’s class, function (e.g. residential, public,

or industry), usage, year of construction, year of demolition, roof type, measured height, and

the number and individual heights of all its storeys above and below ground (cf. Figure 7).

Figure 7: UML diagram of Building model

Furthermore, Addresses can be assigned to Buildings or BuildingParts. In particular,

BuildingParts may again comprise BuildingParts as components, because the composition

38 3D Geodatabase for CityGML 2019

relation is inherited. This way a tree-like hierarchy can be created whose root object is a

Building and whose non-root nodes are BuildingParts. The attribute values are generally filled

in the lower hierarchy level, because basically every part can have its own construction year

and function. However, the function can also be defined in the root of the hierarchy and

therefore span the whole building. The individual BuildingParts within a Building must not

penetrate each other and must form a coherent object.

The geometric representation of an _AbstractBuilding is successively refined from LOD0 to

LOD4. Therefore, a single building can have multiple spatial representations in different

levels of detail at the same time by Solid, MultiSurface, and/or MultiCurve (cf. Figure 7).

In LoD0, the building can be represented by horizontal, 3-dimentional surfaces describing the

footprint and the roof edge. In LoD1, a building model consists of a geometric representation

of the building volume. Optionally, a MultiCurve representing the TerrainIntersectionCurve

can be specified. This geometric representation is refined in LoD2 by additional MultiSurface

and MultiCurve geometries, used for modelling architectural details like a roof overhang,

columns, or antennas. In LoD2 and higher LoDs the outer facade of a building can also be

differentiated semantically by the classes _BoundarySurface and BuildingInstallation. A

_BoundarySurface is a part of the building’s exterior shell with a special function like wall

(WallSurface), roof (RoofSurface), ground plate (GroundSurface), or closing surface

(ClosureSurface) as shown in Figure 8. Closure surfaces can be used to virtually seal open

buildings as for example hangars, allowing e.g. volume calculation. The BuildingInstallation

class is used for building elements like balconies, chimneys, dormers, or outer stairs, strongly

affecting the outer appearance of a building. A BuildingInstallation is used for the

representation of chimneys, stairs, balconies etc. and optionally has the attributes class,

function, and usage.

Figure 8: Boundary surfaces

In LoD3, the openings in _BoundarySurface objects (doors and windows) can be represented

as thematic objects. In LoD4, the highest level of resolution, also the interior of a building,

composed of several rooms, is represented in the building model by the class Room. The

aggregation of rooms according to arbitrary, user-defined criteria (e.g. for defining the rooms

corresponding to a certain storey) is achieved by employing the general grouping concept

provided by CityGML. Interior installations of a building, i.e. objects within a building which

3D Geodatabase for CityGML 2019 39

(in contrast to furniture) cannot be moved, are represented by the class

IntBuildingInstallation. If an installation is attached to a specific room (e.g. radiators or

lamps), they are associated with the Room class, otherwise (e.g. in case of rafters or pipes)

with _AbstractBuilding. A Room may have the attributes class, function, and usage referenced

to external code lists. The class attribute allows a classification of rooms with respect to the

stated function, e.g. commercial or private rooms, and occurs only once. The function

attribute is intended to express the main purpose of the room, e.g. living room, kitchen. The

attribute usage can be used if the object’s usage differs from its function. Both attributes can

occur multiple times.

The visible surface of a room is represented geometrically as a Solid or MultiSurface.

Semantically, the surface can be structured into specialised _BoundarySurfaces, representing

floor (FloorSurface), ceiling (CeilingSurface), and interior walls (InteriorWallSurface) (cf.

Figure 8). Room furniture, like tables and chairs, can be represented in the CityGML building

model with the class BuildingFurniture. A BuildingFurniture may have the attributes class,

function, and usage.

2.2.4.3 Bridge Model

The bridge model was developed in analogy to the building model (cf. section 2.2.4.2) with

regard to structure and attributes [Gröger et al., 2008]. The bridge model allows for the

representation of the thematic, spatial and visual aspects of bridges and bridge parts in four

levels of detail, LOD 1 – 4. A (movable or unmovable) bridge can consist of multiple

BridgeParts. Like Bridge, BridgePart is a subclass of _AbstractBridge and hence, has the

same attributes and relations. The relation consistOfBridgePart represents the aggregation

hierarchy between a Bridge (or a BridgePart) and it’s BridgeParts. By this means, an

aggregation hierarchy of arbitrary depth can be modelled. The semantic attributes of an

_AbstractBridge are class, function, usage and is_movable. The attribute class is used to

classify bridges, e.g. to distinguish different construction types (cf. Figure 9). The attribute

function allows representing the utilization of the bridge independently of the construction.

Possible values may be railway bridge, roadway bridge, pedestrian bridge, aqueduct, etc. The

option to denote a usage which is divergent to one of the primary functions of the bridge

(function) is given by the attribute usage. Each Bridge or BridgePart feature may be assigned

zero or more addresses using the address property.

Figure 9: Example of bridge consisting of bridge parts

40 3D Geodatabase for CityGML 2019

The spatial properties are defined by a solid for each of the four LODs (relations lod1Solid to

lod4Solid). In analogy to the building model, the semantical as well as the geometrical

richness increases from LOD1 (blocks model) to LOD3 (architectural model). Interior

structures like rooms are dedicated to LOD4. To cover the case of bridge models where the

topology does not satisfy the properties of a solid (essentially water tightness), a multi-surface

representation is allowed (lod1MultiSurface to lod4MultiSurface). The line where the bridge

touches the terrain surface is represented by a terrain intersection curve, which is provided for

each LOD (relations lod1TerrainIntersection to lod4TerrainIntersection). In addition to the

solid representation of a bridge, linear characteristics like ropes or antennas can be specified

geometrically by the lod1MultiCurve to lod4MultiCurve relations.

The thematic boundary surfaces of a bridge are defined in analogy to the building module.

_BoundarySurface is the abstract base class for several thematic classes, structuring the

exterior shell of a bridge as well as the visible surfaces of rooms, bridge construction elements

and both outer and interior bridge installations. From _BoundarySurface, the thematic classes

RoofSurface, WallSurface, GroundSurface, OuterCeilingSurface, OuterFloorSurface,

ClosureSurface, FloorSurface, InteriorWallSurface, and CeilingSurface are derived.

Figure 10: Different BoundarySurfaces of a bridge

Bridge elements which do not have the size, significance or meaning of a BridgePart can be

modelled either as BridgeConstructionElement or as BridgeInstallation. Elements which are

essential from a structural point of view are modelled as BridgeConstructionElement, for

example structural elements like pylons, anchorages etc. (cf. Figure 9, Figure 11). A general

classification as well as the intended and actual function of the construction element are

represented by the attributes class, function, and usage. The visible surfaces of a bridge

construction element can be semantically classified using the concept of boundary surfaces

representing floor (FloorSurface), ceiling (CeilingSurface), and interior walls

(InteriorWallSurface) (cf. Figure 10). Whereas a BridgeConstructionElement has structural

relevance, a BridgeInstallation represents an element of the bridge which can be eliminated

without collapsing of the bridge (e.g. stairway, antenna, and railing) (cf. Figure 11).

BridgeInstallations occur in LOD 2 to 4. The class BridgeInstallation contains the semantic

3D Geodatabase for CityGML 2019 41

attributes class, function and usage. The attribute class gives a classification of installations of

a bridge. With the attributes function and usage, nominal and real functions of the bridge

installation can be described.

Figure 11: Example of bridge consisting of BridgeConstructionElement and BridgeInstallation

In LOD3 and LOD4, a _BoundarySurface may contain _Openings like doors and windows.

The classes BridgeRoom, IntBridgeInstallation and BridgeFurniture allow for the

representation of the bridge interior. They are designed in analogy to the classes Room,

IntBuildingInstallation and BuildingFurniture of the building module and share the same

meaning. The bridge interior can only be modelled in LOD4.

42 3D Geodatabase for CityGML 2019

Figure 12: UML diagram of bridge model

2.2.4.4 CityFurniture Model

City furniture objects are immovable objects like lanterns, traffic lights, traffic signs, flower

buckets, advertising columns, benches, delimitation stakes, or bus stops. The class

CityFurniture may have the attributes class, function and usage (cf. UML-diagram, Figure

13). Their possible values are explained in detail in the CityGML specification. The class

attribute allows an object classification like traffic light, traffic sign, delimitation stake, or

garbage can, and can occur only once. The function attribute describes, to which thematic area

3D Geodatabase for CityGML 2019 43

the city furniture object belongs to (e.g. transportation, traffic regulation, architecture etc.),

and can occur multiple times. The attribute usage denotes the real purpose of the city object,

and can occur multiple times as well.

Figure 13: City furniture model

Since CityFurniture is a subclass of CityObject and hence is a feature, it inherits the attribute

gml:name. As with any CityObject, CityFurniture objects may be assigned

ExternalReferences and GenericAttributes. For ExternalReferences city furniture objects can

have links to external thematic databases. Thereby, semantical information of the objects,

which cannot be modelled in CityGML, can be transmitted and used in the 3D city model for

further processing, for example information from systems of power lines or pipelines, traffic

sign cadastre, or water resources for disaster management.

City furniture objects can be represented in city models with their specific geometry, but in

most cases the same kind of object has an identical geometry. The geometry of CityFurniture

objects in LoD 1-4 may be represented by an explicit geometry (lodXGeometry where X is

between 1 and 4) or an ImplicitGeometry object (lodXImplicitRepresentation with X between

1 and 4). In the concept of ImplicitGeometry the geometry of a prototype city furniture object

is stored only once in a local coordinate system and referenced by a number of features.

Spatial information of city furniture objects can be taken from city maps or from public and

private external information systems. In order to specify the exact intersection of the DTM

with the 3D geometry of a city furniture object, the latter can have a TerrainIntersectionCurve

(TIC) for each LoD. This allows for ensuring a smooth transition between the DTM and the

city furniture object.

2.2.4.5 Digital Terrain Model

CityGML includes a very adaptable digital terrain model (DTM) which permits the

combination of heterogeneous DTM types (grid, TIN, break lines, mass points) available in

different levels of detail.

44 3D Geodatabase for CityGML 2019

A DTM fitting to a certain city model is represented by the class ReliefFeature. This is a

CityObject having the LoD step that fits the DTM as attribute. A relief consists of several

ReliefComponents. Each of these components that are likewise CityObjects also comprises a

LoD step. Individual geometrical types of the components are defined by the four subclasses

of ReliefComponent: breaklines, triangular networks (TINs), mass points, and grids (raster).

Geometrically, the corresponding ISO 19107 or GML classes define these types: breaklines

by a single MultiCurve, TINs by TriangulatedSurfaces, mass points by MultiPoint, and raster

by RectifiedGridCoverage.

Figure 14: UML diagram representing the digital terrain model

A relief can contain ReliefComponents of heterogeneous type and different LoDs. A relief in

LoD2, for example, can contain some LoD3-TIN-ReliefComponents beside a LoD2-Raster-

ReliefComponent. In some cases even a LoD1 grid may exist in some regions of the relief.

In order to geometrically separate the individual components of a grid, which can exist in

different LoD, the validity polygon of a component (extent) is used. This polygon defines the

scope in which the component is valid. A grid with three components is shown in Figure 15.

It depicts a coarse raster containing two high-resolution TINs (TIN 1 and 2). The validity

polygon of the raster is represented by the blue line, while the validity polygons of the TINs

are bordered in green and red. In this case, the validity polygon of the raster (grid) has two

holes where the raster (grid) is not valid, although it does exist. Instead, the high-resolution

TINs are used for the representation of the terrain in these regions. That means the validity

polygons of the TINs exactly fit the two holes in the validity polygon of the raster (grid).

3D Geodatabase for CityGML 2019 45

Figure 15: A relief, consisting of three components and its validity polygons

(from: [Plümer et al., 2005])

In the simplest and most frequent case, the validity polygon of a grid corresponds exactly with

its Bounding box, i.e. the spatial extent of the grid.

2.2.4.6 Generic Objects and Attributes

The concept of generic objects and attributes has been introduced to facilitate the storage and

exchange of 3D objects, which are not covered by explicitly modelled classes within

CityGML or which requires additional attributes. These generic extensions are realised by the

class GenericCityObject and the data type genericAttribute (cf. Figure 16).

A GenericCityObject may have the attributes class, function, and usage are specified as

gml:CodeType. The class attribute allows an object classification within the thematic area

such as bridge, tunnel, pipe, power line, dam, or unknown. The function attribute describes to

which thematic area the GenericCityObject belongs (e.g. site, transportation, architecture,

energy supply, water supply, unknown etc.). The attribute usage can be used, if the object's

usage differs from its function. Each _CityObject and all thematic subclasses can have an

arbitrary number of genericAttributes. Data types may be String, Integer, Double (floating

point number), URI (Unified Resource Identifier), Date, and gml:MeasureType. The attribute

type is defined by the selection of the particular subclass of _genericAttribute (stringAttribute,

intAttribute etc.). In addition, generic attributes can be grouped using the genericAttributeSet

class which is derived from _genericAttribute and thus is also realized as generic attribute. Its

value is the set of contained generic attributes.

46 3D Geodatabase for CityGML 2019

Figure 16: GenericCityObject model

The geometry of a GenericCityObject can either be an explicit GML3 geometry or an

ImplicitGeometry. In the case of an explicit geometry, the object can have only one geometry

for each LoD, which may be an arbitrary 3D GML geometry object (class _Geometry, which

is the base class of all GML geometries, lodXGeometry, X in 0…4). Absolute coordinates

according to the reference system of the city model must be given for the explicit geometry.

In the case of an ImplicitGeometry, a reference point (anchor point) of the object and

optionally a transformation matrix must be given. In order to compute the actual location of

the object, the transformation of the local coordinates into the reference system of the city

model must be processed and the anchor point coordinates must be added. The shape of an

ImplicitGeometry can be given as an external resource with a proprietary format, e.g. a

VRML or DXF file from a local file system or an external web service. Alternatively, the

shape can be specified as a 3D GML3 geometry with local Cartesian coordinates using the

property relativeGeometry.

In order to specify the exact intersection of the DTM with the 3D geometry of a

GenericCityObject, the latter can have TerrainIntersectionCurves for every LoD. This is

important for 3D visualization but also for certain applications like driving simulators. For

example, if a city wall (e.g., the Great Wall of China) should be represented as a

GenericCityObject, a smooth transition between the DTM and the road on the city wall would

have to be ensured (in order to avoid unrealistic bumps).

3D Geodatabase for CityGML 2019 47

2.2.4.7 LandUse Model

LandUse objects describe areas of the earth’s surface dedicated to a specific land use. They

can be employed to represent parcels in 3D. Figure 17 shows the UML diagram of land use

objects.

Every LandUse object may have the attributes class (e.g. settlement area, industrial area,

farmland etc.), function (purpose, e.g. cornfield), and usage which can be used, if the way the

object is actually used differs from the function. Since the attributes usage and function may

be used multiple times, storing them in only one string requires a single white space as unique

separatorRelational database schema.

Figure 17: LandUse model

The LandUse object is defined for all LoD 0-4 and may have different geometries for each

LoD. The surface geometry of a LandUse object is required to have 3D coordinate values. It

must be a GML3 MultiSurface, which might be assigned appearance properties like material

(X3DMaterial) and texture (_AbstractTexture and its subclasses).

2.2.4.8 Transportation Model

The transportation model of CityGML is a multi-functional, multi-scale model focusing on

thematic and functional as well as geometrical/topological aspects. Transportation features are

represented as a linear network in LoD0. Starting from LoD1, all transportation features are

geometrically described by 3D surfaces.

The main class is TransportationComplex (cf. Figure 19) which represents, for example, a

road, a track, a railway, or a square. It is composed of the parts TrafficArea and

AuxiliaryTrafficArea. Figure 18 depicts an example for a LoD2 TransportationComplex

configuration within a virtual 3D city model. The Road consists of several TrafficAreas for

the sidewalks, road lanes, parking lots, and of AuxiliaryTrafficAreas below the raised flower

beds.

48 3D Geodatabase for CityGML 2019

Figure 18: LoD2 representation of a transportation complex

(from: [Gröger et al., 2008])

The road itself is represented as a TransportationComplex, which is further subdivided into

TrafficAreas and AuxiliaryTrafficAreas. The TrafficAreas are those elements, which are

important in terms of traffic usage, like car driving lanes, pedestrian zones and cycle lanes.

The AuxiliaryTrafficAreas are describing further elements of the road, like kerbstones, middle

lanes, and green areas.

Figure 19: UML model for transportation complex

TransportationComplex objects can be thematically differentiated using the subclasses Track,

Road, Railway, and Square. Every TransportationComplex has the attributes class, function

and usage, referencing to the external code lists. The attribute class describes the

classification of the object. The attribute function describes the purpose of the object like, for

example national motorway, country road, or airport, while the attribute usage can be used, if

the actual usage differs from the function.

3D Geodatabase for CityGML 2019 49

In addition, both TrafficArea and AuxiliaryTrafficArea may have the attributes class, function,

usage, and surfaceMaterial. The attribute class describe the classification of the object. For

TrafficArea, the attribute function describes whether the object is a car driving lane, a

pedestrian zone, or a cycle lane, while the usage attribute indicates which modes of

transportation can use it (e.g. pedestrian, car, tram, roller skates). The attribute

surfaceMaterial specifies the type of pavement and may also be used for

AuxiliaryTrafficAreas (e.g. asphalt, concrete, gravel, soil, rail, grass etc.). The function

attribute of the AuxiliaryTrafficArea defines, among others, kerbstones, middle lanes, or green

areas. The possible values are specified in external code lists.

TransportationComplex is a subclass of _TransportationObject and of the root class

_CityObject. The geometrical representation of the TransportationComplex varies through the

different levels of detail. In the coarsest LoD0, the transportation complexes are modelled by

line objects establishing a linear network. Starting from LoD1, a TransportationComplex

provides an explicit surface geometry, reflecting the actual shape of the object, not just its

centreline. In LoD2 to LoD4, it is further subdivided thematically into TrafficAreas, which are

used by transportation, such as cars, trains, public transport, airplanes, bicycles, or pedestrians

and in AuxiliaryTrafficAreas, which are of minor importance for transportation purposes, for

example road markings, green spaces or flower tubs.

2.2.4.9 Tunnel Model

The tunnel model is closely related to the building model. It supports the representation of

thematic and spatial aspects of tunnels and tunnel parts in four levels of detail, LOD1 to

LOD4. The UML diagram of the tunnel model is shown in Figure 21. The pivotal class of the

model is _AbstractTunnel, which is a subclass of the thematic class _Site (and transitively of

the root class _CityObject). _AbstractTunnel is specialized either to a Tunnel or to a

TunnelPart. Since an _AbstractTunnel consists of TunnelParts, which again are

_AbstractTunnels, an aggregation hierarchy of arbitrary depth may be realized. Both classes

Tunnel and TunnelPart inherit the attributes of _AbstractTunnel: the class of the tunnel, the

function, the usage, the year of construction and the year of demolition. In contrast to

_AbstractBuilding, Address features cannot be assigned to _AbstractTunnel.

Figure 20: Example of a tunnel modelled with two tunnel parts

50 3D Geodatabase for CityGML 2019

The geometric representation and semantic structure of an _AbstractTunnel is shown in

Figure 21. The model is successively refined from LOD1 to LOD4. Therefore, not all

components of a tunnel model are represented equally in each LOD and not all aggregation

levels are allowed in each LOD. An object can be represented simultaneously in different

LODs by providing distinct geometries for the corresponding LODs.

Figure 21: UML diagram of tunnel model

Similar to the building and bridge models (cf. chapters 2.2.4.2 and 2.2.4.3), only the outer

shell of a tunnel is represented in LOD1 – 3, which is composed of the tunnel’s boundary

surfaces to the surrounding earth, water, or outdoor air. The interior of a tunnel may only be

modelled in LOD4.

3D Geodatabase for CityGML 2019 51

In LOD1, a tunnel model consists of a geometric representation of the tunnel volume.

Optionally, a MultiCurve representing the TerrainIntersectionCurve can be specified. The

geometric representation is refined in LOD2 by additional MultiSurface and MultiCurve

geometries. In LOD2 and higher LODs the outer structure of a tunnel can also be

differentiated semantically by the classes _BoundarySurface and TunnelInstallation. A

boundary surface is a part of the tunnel’s exterior shell with a special function like wall

(WallSurface), roof (RoofSurface), ground plate (GroundSurface), outer floor

(OuterFloorSurface), outer ceiling (OuterCeilingSurface) or ClosureSurface (see Figure 22).

The TunnelInstallation class is used for tunnel elements like outer stairs, strongly affecting

the outer appearance of a tunnel. A TunnelInstallation may have the attributes class, function

and usage.

Figure 22: Different BoundarySurfaces of a tunnel

In LOD3, the openings in _BoundarySurface objects (doors and windows) can be represented

as thematic objects. In LOD4, the highest level of resolution, also the interior of a tunnel,

composed of several hollow spaces, is represented in the tunnel model by the class

HollowSpace. This enlargement allows a virtual accessibility of tunnels, e.g. for driving

through a tunnel, for simulating disaster management or for presenting the light illumination

within a tunnel. The aggregation of hollow spaces according to arbitrary, user defined criteria

(e.g. for defining the hollow spaces corresponding to horizontal or vertical sections) is

achieved by employing the general grouping concept provided by CityGML (cf. chapter

2.2.4.1). Interior installations of a tunnel, i.e. objects within a tunnel which (in contrast to

furniture) cannot be moved, are represented by the class IntTunnelInstallation. If an

installation is attached to a specific hollow space (e.g. lamps, ventilator), they are associated

with the HollowSpace class, otherwise (e.g. pipes) with _AbstractTunnel. A HollowSpace

may have the attributes class, function and usage whose possible values can be enumerated in

52 3D Geodatabase for CityGML 2019

code lists. The class attribute allows a general classification of hollow spaces, e.g. commercial

or private rooms, and occurs only once. The function attribute is intended to express the main

purpose of the hollow space, e.g. control area, installation space, and storage space. The

attribute usage can be used if the way the object is actually used differs from the function.

Both attributes can occur multiple times. The visible surface of a hollow space is represented

geometrically as a Solid or MultiSurface. Semantically, the surface can be structured into

specialized _BoundarySurfaces, representing floor (FloorSurface), ceiling (CeilingSurface),

and interior walls (InteriorWallSurface). Hollow space furniture, like movable equipment in

control areas, can be represented in the CityGML tunnel model with the class

TunnelFurniture. A TunnelFurniture may have the attributes class, function and usage.

2.2.4.10 Vegetation Model

The vegetation model of CityGML distinguishes between solitary vegetation objects like trees

and vegetation areas, which represent biotopes like forests or other plant communities. Single

vegetation objects are modelled by the class SolitaryVegetationObject, while for areas filled

with specific vegetation the class PlantCover is used.

Figure 23: Image illustrates objects of the vegetation model

(from: [Gröger et al., 2008])

The geometry representation of a PlantCover feature may be a MultiSurface or a MultiSolid,

depending on the vertical extent of the vegetation. For example, regarding forests, a

MultiSolid representation might be more appropriate (cf. Figure 23).

The UML diagram of the vegetation model is depicted in Figure 24. A SolitaryVegetation-

Object may have the attributes class (e.g. tree, bush, grass), species (species’ name, e.g. Abies

alba), usage, and function (e.g. botanical monument), height, trunkDiameter and

crownDiameter. A PlantCover feature may have the attributes class (plant community),

usage, function (e.g. national forest) and averageHeight. Since both SolitaryVegetationObject

and PlantCover are CityObjects, they inherit all attributes of a city object, in particular its

name (gml:name) and an ExternalReference to a corresponding object in an external

information system, which may contain botanical information from public environmental

agencies.

3D Geodatabase for CityGML 2019 53

Figure 24: Vegetation Model

The geometry of a SolitaryVegetationObject may be defined in LoD 1-4 by absolute

coordinates, or prototypically by an ImplicitGeometry. Season dependent appearances may be

mapped using ImplicitGeometries. For visualisation purposes, only the content of the library

object defining the object’s shape and appearance has to be swapped.

A SolitaryVegetationObject or a PlantCover may have a different geometry in each LoD.

Whereas a SolitaryVegetationObject is associated with the _Geometry class representing an

arbitrary GML geometry (by the relation lodXGeometry), a PlantCover is restricted to be

either a MultiSolid or a MultiSurface.

2.2.4.11 WaterBodies Model

The water bodies model represents the thematic aspects and 3D geometry of rivers, canals,

lakes, and basins. In LoD 2-4 water bodies are bounded by distinct thematic surfaces. These

surfaces are the obligatory WaterSurface, defined as the boundary between water and air, the

optional WaterGroundSurface, defined as the boundary between water and underground (e.g.

DTM or floor of a 3D basin object), and zero or more WaterClosureSurfaces, defined as

virtual boundaries between different water bodies or between water and the end of a modelled

region (cf. Figure 25Fehler! Verweisquelle konnte nicht gefunden werden.). A dynamic

element may be the WaterSurface to represent temporarily changing situations of tidal flats.

Figure 25: Definition of waterbody attributes (from: [Gröger et al., 2012])

Water

WaterSurface

WaterGroundSurface

WaterClosure

Surface

WaterBody

54 3D Geodatabase for CityGML 2019

Each WaterBody object may have the attributes class (e.g. lake, river, or fountain), function

(e.g. national waterway or public swimming) and usage (e.g. navigable) referencing to

external code lists. Since the attributes usage and function may be used multiple times, storing

them in only one string requires a unique delimiter.

WaterBody is a subclass of the root class _CityObject. The geometrical representation of the

WaterBody varies for different levels of detail. The WaterBody can be differentiated

semantically by the class _WaterBoundarySurface. A _WaterBoundarySurface is a part of the

water body’s exterior shell with a special function like WaterSurface, WaterGroundSurface or

WaterClosureSurface. As with any _CityObject, WaterBody objects as well as WaterSurface,

WaterGroundSurface, and WaterClosureSurface objects may be assigned ExternalReferences

and GenericAttributes.

Both LoD0 and LoD1 represent a low level of illustration and high grade of generalisation.

Here the rivers are modelled as MultiCurve geometry and brooks are omitted. Seas, oceans,

and lakes with significant extent are represented as MultiSurfaces. (cf. Figure 26)

Figure 26: Waterbody model

Starting from LoD1, water bodies may also be modelled as volumes filled with water,

represented by Solids. If a water body is represented by a Solid in LoD2 or higher, the surface

geometries of the corresponding thematic WaterClosureSurface, WaterGroundSurface, and

WaterSurface objects must coincide with the exterior shell of the Solid. This can be ensured,

if for one LoD X the respective lodXSurface elements (where X is between 2 and 4) of

WaterClosureSurface, WaterGroundSurface, and WaterSurface reference the corresponding

polygons (using XLink) within the CompositeSurface that defines the exterior shell of the

Solid. Furthermore, every _WaterBoundarySurface must have at least one associated surface

geometry attached.

The water body model implicitly includes the concept of TerrainIntersectionCurves (TIC),

e.g. to specify the exact intersection of the DTM with the 3D geometry of a WaterBody or to

adjust a WaterBody or WaterSurface to the surrounding DTM. The rings defining the

WaterSurface polygons implicitly delineate the intersection of the water body with the terrain

or basin.

3D Geodatabase for CityGML 2019 55

2.3 Relational database schema

 Mapping rules, schema conventions

2.3.1.1 Mapping of classes onto tables

Generally, one or more classes of the UML diagram are mapped onto one table; the name of

the table is identical to the class name (a leading underscore indicating an abstract class is left

out). Classes are combined into a single table according to the class relations as shown in the

UML diagrams by using orange coloured boxes. The scalar attributes of the classes become

columns of the corresponding table with identical name.

The types of the attributes are customized to corresponding database (Oracle/PostgreSQL)

data types (see Table 1). Some attributes of the data type date were mapped to TIMESTAMP

WITH TIME ZONE to allow a more accurate storage of time values.

Table 1: Data type mapping

2.3.1.2 Explicit declaration of class affiliation

In the (meta) table OBJECTCLASS, all class names (attribute CLASSNAME) of the schema

are managed. The relation of the subclass to its parent class is represented via the attribute

SUPERCLASS_ID in the subclass as a foreign key to the ID of the parent class (see Fehler!

Verweisquelle konnte nicht gefunden werden.).

The table OBJECTCLASS is used to efficiently determine the affiliation to a class in the

superclass tables. In addition, the table CITYOBJECT contains the attribute

OBJECTCLASS_ID which refers to the respective table OBJECTCLASS. This way, while

looking at a tuple in CITYOBJECT, the subclass and – if needed – the name of the class can

be determined directly. This mechanism has also been adopted in other tables that are used to

store different CityGML features, e.g. THEMATIC_SURFACE (for all different

BoundarySurfaces of a Building feature) or BUILDING_INSTALLATION (outer or interior)

etc. Please consider that using CityGML ADEs could lead to additional OBJECTCLASS_IDs

in this table (please also refer to 2.3.3.1 Metadata Model).

Data type mapping (excerpt)

UML Oracle PostgreSQL / PostGIS

String, anyURI VARCHAR2, CLOB VARCHAR, TEXT

Integer NUMBER NUMERIC

Double, gml:LengthType BINARY_DOUBLE DOUBLE PRECISION

Boolean NUMBER(1,0) NUMERIC

Date
DATE,

TIMESTAMP WITH TIME ZONE
DATE,

TIMESTAMP WITH TIME ZONE

Primitive Type (Color,
TransformationMatrix,

CodeType etc.)
VARCHAR2 VARCHAR

Enumeration VARCHAR2 VARCHAR

GML Geometry,
textureCoordinates

SDO_GEOMETRY GEOMETRY

GML RectifiedGridCoverage SDO_GEORASTER & SDO_RASTER RASTER

Texture (only reference of
type anyURI in CityGML)

BLOB BYTEA

56 3D Geodatabase for CityGML 2019

OBJECTCLASS

ID CLASSNAME SUPERCLASS_ID

0 Undefined

1 _GML

2 _Feature 1

3 _CityObject 2

4 LandUse 3

5 GenericCityObject 3

6 _VegetationObject 3

7 SolitaryVegetationObject 6

8 PlantCover 6

9 WaterBody 105

10 _WaterBoundarySurface 3

11 WaterSurface 10

12 WaterGroundSurface 10

13 WaterClosureSurface 10

14 ReliefFeature 3

15 _ReliefComponent 3

16 TINRelief 15

17 MassPointRelief 15

18 BreaklineRelief 15

19 RasterRelief 15

20 _Site 3

21 CityFurniture 3

22 _TransportationObject 3

23 CityObjectGroup 3

24 _AbstractBuilding 20

25 BuildingPart 24

26 Building 24

27 BuildingInstallation 3

28 IntBuildingInstallation 3

29 _BuildingBoundarySurface 3

30 BuildingCeilingSurface 29

31 InteriorBuildingWallSurface 29

32 BuildingFloorSurface 29

33 BuildingRoofSurface 29

34 BuildingWallSurface 29

35 BuildingGroundSurface 29

36 BuildingClosureSurface 29

37 _BuildingOpening 3

38 BuildingWindow 37

39 BuildingDoor 37

40 BuildingFurniture 3

41 BuildingRoom 3

42 TransportationComplex 22

43 Track 42

44 Railway 42

45 Road 42

46 Square 42

47 TrafficArea 22

48 AuxiliaryTrafficArea 22

49 FeatureCollection 2

50 Appearance 2

51 _SurfaceData 2

52 _Texture 51

53 X3DMaterial 51

54 ParameterizedTexture 52

3D Geodatabase for CityGML 2019 57

55 GeoreferencedTexture 52

56 _TextureParametrization 1

57 CityModel 49

58 Address 2

59 ImplicitGeometry 1

60 OuterBuildingCeilingSurface 29

61 OuterBuildingFloorSurface 29

62 _AbstractBridge 20

63 BridgePart 62

64 Bridge 62

65 BridgeInstallation 3

66 IntBridgeInstallation 3

67 _BridgeBoundarySurface 3

68 BridgeCeilingSurface 67

69 InteriorBridgeWallSurface 67

70 BridgeFloorSurface 67

71 BridgeRoofSurface 67

72 BridgeWallSurface 67

73 BridgeGroundSurface 67

74 BridgeClosureSurface 67

75 OuterBridgeCeilingSurface 67

76 OuterBridgeFloorSurface 67

77 _BridgeOpening 3

78 BridgeWindow 77

79 BridgeDoor 77

80 BridgeFurniture 3

81 BridgeRoom 3

82 BridgeConstructionElement 3

83 _AbstractTunnel 20

84 TunnelPart 83

85 Tunnel 83

86 TunnelInstallation 3

87 IntTunnelInstallation 3

88 _TunnelBoundarySurface 3

89 TunnelCeilingSurface 88

90 InteriorTunnelWallSurface 88

91 TunnelFloorSurface 88

92 TunnelRoofSurface 88

93 TunnelWallSurface 88

94 TunnelGroundSurface 88

95 TunnelClosureSurface 88

96 OuterTunnelCeilingSurface 88

97 OuterTunnelFloorSurface 88

98 _TunnelOpening 3

99 TunnelWindow 98

100 TunnelDoor 98

101 TunnelFurniture 3

102 HollowSpace 3

103 TexCoordList 56

104 TexCoordGen 56

105 _WaterObject 3

106 _BrepGeometry 0

107 Polygon 106

108 BrepAggregate 106

109 TexImage 0

110 ExternalReference 0

111 GridCoverage 0

112 _genericAttribute 0

58 3D Geodatabase for CityGML 2019

113 genericAttributeSet 112

 Conceptual database structure

Starting from version 4.0.0, the 3DCityDB database schema has been slightly modified to

support the handling of CityGML ADEs (Application Domain Extensions). With this

enhancement, user-defined database schemas can be dynamically created and attached to a

3DCityDB instance for storing ADE data contents. In addition, every existing CityGML class

table is now equipped with an OBJECTCLASS_ID column which allows to distinguisch the

stored data contents of different CityGML and ADE classses having inheritance relationships.

Moreover, a set of new metadata tables are introduced in addition to the existing

OBJECTCLASS table, for holding the relevant meta-information of the registered CityGML

ADEs. In general, all 3DCityDB tables now logically belong to one of the three modules

Metadata Module, Core Data Module, and Dynamic Data Module, whose relations are shown

in the following figure.

Figure 27: New conceptual 3DCityDB database structure for handling CityGML ADEs

The green tables enclosed in the Core Data Module represent those database tables that are

responsible for storing the standard CityGML models such as Building, Transportation,

Tunnel, CityFurniture, CityObjectGroup, Generic, Appearance etc. This module comprises

basically the tables of the database schema of previous versions of the 3DCityDB (cf. the next

section for more details). For a given CityGML ADE, an additional group of database tables

forming a separate module belonging to the Dynamic Data Module (pink tables in the figure)

can be created and attached to the 3DCityDB database schema. In addition, the relationships

(e.g. generalization/specialization and associations) among the model classes of CityGML and

CityGML ADEs are adequately reflected using database foreign key constraints which allow

to ensure the data integrity and consistency within the database system. The Metadata Module

associated with the Dynamic Data Module is utilized for storing the relevant meta-

information (e.g. the XML namespaces, schema files, and class affiliations etc.) about ADEs

Technische Universität MünchenLehrstuhl für Geoinformatik

New conceptual database structure

39

Core Data Module

CityGML ADE 1

Metadata Module

CityGML ADE 2

Many More ADEs

Modules …

Dynamic Data Module

3D Geodatabase for CityGML 2019 59

as well as the referencing relations among the ADE and CityGML application schemas. This

way, the dependencies between the registered ADE application schemas can be directly read

from the 3DCityDB database schema to facilitate the database administration process, i.e. the

registration and deregistration of multiple CityGML ADEs within a 3DCityDB instance.

 Database schema

In the following paragraph, the tables of the relational schema are displayed graphically and

described in detail. The description is based on the remarks on UML charts in chapter 2.2.

Focus is put on situations where the conversion into tables leads to changes in the model.

The figures are taken from Oracle JDeveloper, which allows to design different diagrams and

reuse already defined tables. JDeveloper (v12.2.1) was used to design the database schema

and extract SQL DDL scripts automatically for Oracle databases. It is a freeware IDE by

Oracle and can be downloaded at: http://www.oracle.com/technetwork/developer-tools/jdev.

For PostgreSQL databases the Open Source tool pgModeler (v0.8.2) has been used to

maintain the schema. Packed installers can be purchased at http://pgmodeler.com.br/ or the

user compiles the software from the source code available at GitHub

(https://github.com/pgmodeler/pgmodeler).

Starting from version 3.0.0 of the 3DCityDB the corresponding schema modelling projects

are shipped with the release and can be edited by the user to create customized SQL scripts.

However, the 3DCityDB Import/Export tool only supports the default schema, unless it is not

reprogrammed against the user’s new database schema.

2.3.3.1 Metadata Model

An overview of the relational structure of the Metadata Module is shown in Figure 28. The

table ADE serves as a central registry for all the registered CityGML ADEs each of which

corresponds to a table row and the relevant ADE metadata attributes are mapped onto the

respective columns. For example, each registered ADE shall own a globally unique ID value

for identification purpose. This ID value could be a UUID (Universally Unique Identifier)

which can be automatically generated and stored in the column ADEID while registering the

ADE. The columns NAME and DESCRIPTION are mainly used for storing the basic

description information of each ADE. The column VERSION denotes the version number of

an ADE and allows to distinguish different release versions. In the 3DCityDB database

schema, the database objects like tables, indexes, foreign key constrains, and sequences of a

certain ADE shall be named by starting with a unique prefix. This allows applications to

rapidly fetch out the database schema of a certain ADE using a wildcard filter. In this way, it

is possible to automatically perform some kinds of statistics on the ADE data contents stored

in the individual tables. In addition, the column XML_SCHEMAMAPPING_FILE is used to

store the XML-formatted schema mapping information of each ADE and is henced defined

with the CLOB data type. Another CLOB-typed column is DROP_DB_SCRIPT where the

SQL statements for dropping the individual ADE database schema is saved and can be easily

retrieved and carried out at the database side. Moreover, the CREATION_DATE and

CREATION_PERSON are two application-specific attribute columns for providing the

60 3D Geodatabase for CityGML 2019

information about who and when have operated the ADE registration process. This meta-

information is typically helpful for 3DCityDB users to accomplish the administration work

e.g. searching and cleaning up those ADEs that are outdated or registered by certain database

users.

Figure 28: Technical implementation of the 3DCityDB Metadata Module in a relational diagram

A CityGML ADE may consist of multiple application schemas one of which should be the

root schema referencing the others. Such dependency information along with the meta-

information of the individual schema are stored in two tables, namely SCHEMA and

SCHEMA_REFERENCING. The SCHEMA_REFERENCING table is an associative table which

3D Geodatabase for CityGML 2019 61

contains two foreign key columns REFERENCED_ID and REFERENCING_ID to link the

respective referencing and referenced schemas. In the table SCHEMA, the flag attribute

IS_ADE_ROOT is used for denoting the root schema that directly or indirectly references all

the other ADE schemas of an ADE. In this way, the dependency hierarchy of the ADE

schemas can be fully represented in a relational model to facilitate the reconstruction of the

original schema relations through user applications. For each schema, its meta-information

such as the schema location, namespace, namespace prefix, source XML schema definition

file, as well as the file type (e.g. plain XML text or archived) of the schema can also be stored

in the further columns of the SCHEMA table. The column CITYGML_VERSION refers to the

consideration that an ADE schema may have two different versions, because they can be

defined based on both CityGML version 1.0.0 and 2.0.0 at the same time.

The table OBJECTCLASS is a central registry for enumerating not only the standard

CityGML classes but also the classes of the registered ADEs. Each class is assigned with a

globally unique numeric ID for querying and accessing the class-related information. As

explained in the section 2.3.1.2, the ID values ranging from 0 to 113 have already been

reserved for the standard CityGML classes. Thus, the ID values of the registered ADE classes

must be larger than 113. Concerning the situation that more additional feature classes might

be introduced into the future versions of the CityGML standard, a certain range of integer

values must be preserved and shall not be used for ADEs. Therefore, for each ADE, it is

recommended to assign its classes with a set of relatively large integer values which can be

incrementally sequenced with an initial value of 10000. In order to avoid the class ID conflict,

each ADE shall own a certain large value range which can be centrally maintained and

organized by an official community like the 3DCityDB group. The OBJECTCLASS table also

contains a few additional columns like the IS_ADE_CLASS which is a flag attribute to

denote which classes are belonging to ADEs. Another column named TABLENAME refers to

the table name of a CityGML or ADE class and provides the basic information about model

mapping. The last two columns SUPERCLASS_ID and BASECLASS_ID are two foreign

key columns of the ID column for representing the inheritance hierarchy of all the CityGML

and ADE classes in a relational structure.

In addition to the inheritance relationship, the aggregation relationship between CityGML and

ADE classes can also be represented within a 3DCityDB instance by means of the table

AGGREGATION_INFO. Its first two columns CHILD_ID and PARENT_ID are two foreign

key columns which point to the primary key column of the table OBJECTCLASS to reflect

the two related classes. The aggregation or composition relationship between each pair of

classes can be distinguished by using the flag attribute IS_COMPOSITE whose value can

either be 0 (aggregation) or 1 (composition). In 3DCityDB, each aggregation/composition is

logically mapped onto a foreign key column or an associative table for joining the two

respective class tables. This meta-information can also be stored in the table

AGGREGATION_INFO using its column JOIN_TABLE_OR_COLUMN_NAME. In addition,

the multiplicity of the individual aggregation/composition are stored in the two numeric

columns MIN_OCCURS and MAX_OCCURS. In case of a 0..* relationship where the value of

the multiplicity end is unbounded, the value in the column MAX_OCCURS shall be set NULL.

62 3D Geodatabase for CityGML 2019

2.3.3.2 Core Model

CITYOBJECT, CITYOBJECT_SEQ

All CityObjects (and instances of the subclasses like Buildings etc.) are represented by tuples

in the table CITYOBJECT. The fields are identical to the attributes of the corresponding

UML class, plus additional columns for metadata like LAST_MODIFICATION_DATE,

UPDATING_PERSON, REASON_FOR_UPDATE and LINEAGE.

The bounding box (gml:Envelope) is stored as rectangular geometry using five points, that

join the minimum and maximum x, y and z coordinates of the bounding box and define it

completely. For backwards compatibility reasons (to Oracle 10g), the envelope cannot be

stored as a volume.

Figure 29: The CityObject’s envelope specified by two points with minimum and maximum coordinate values

(left: black points) is stored as a 3D rectangle (right: black polygon using five points)

In order to identify each object, a unique identifier is essential. Therefore, the column GMLID

stores the gml:id value of every city object. But since gml:ids cannot be guaranteed to be

unique over different CityGML files, the column GMLID_CODESPACE is provided in

addition. It may contain, for instance, the full path to the imported CityGML file containing

the object. The combination of GMLID and GMLID_CODESPACE should be ensured to be

unique for each CityObject.

The attributes NAME or NAME_CODESPACE can contain more than one gml:name property.

In this case they have to be separated by the string '--/\-- ' (more details on the following

page). The CityGML exporter will then create multiple occurrences of <gml:name>

elements.

The attribute OBJECTCLASS_ID provides information on the class affiliation of the

CityObject. This helps to identify the proper subclass tables.

The next free ID value for the table CITYOBJECT is provided by the database sequence

CITYOBJECT_SEQ. This ID is also reused in the separate tables for the different thematic

features.

3D Geodatabase for CityGML 2019 63

CITYMODEL, CITYMODEL_SEQ

CityObject features may be aggregated to a single CityModel. A CityModel serves as root

element of a CityGML feature collection. In order to provide a unique identifier in table

CITYMODEL, the next available ID value is provided by the sequence CITYMODEL_SEQ.

EXTERNAL_REFERENCE, EXTERNAL_REF_SEQ

The table EXTERNAL_REFERENCE is used to store external references; the foreign key

CITYOBJECT_ID refers to the associated CityObject. The sequence EXTERNAL_REF_SEQ

provides the next available ID value for EXTERNAL_REFERENCE.

CITYOBJECTGROUP, GROUP_TO_CITYOBJECT

The aggregation concept described in paragraph 2.1.1 is realized by two tables. The n:m

relationship between an object group (table CITYOBJECTGROUP) consisting of city objects

contained in CITYOBJECT is realized by the table GROUP_TO_CITYOBJECT, which

associates the IDs of both tables. Table 2 shows an example, in which two buildings are

grouped to a hotel complex.

Table 2: Cityobjectgroup tables

For attributes CLASS, FUNCTION and USAGE there is an additional _CODESPACE column

in order to specify the source of code lists used for values (e.g. by a globally unique URL). As

a CityGML feature like CityObjectGroup can have multiple instances of attributes class,

function and usage but only one target column exist in the table, values are separated by the

string sequence '--/\-- '. The CityGML exporter will then create multiple occurrences of

corresponding elements. Normalization rules were not applied in this case in order to avoid

many joins when querying all information of building objects. Array types weren’t used either

as their implementation varies between different database systems.

This concept applies to all CityGML features and can therefore be found in every object table

(except for boundary surfaces of buildings, bridges and tunnels). They do not appear once in

CITYOBJECTGROUP (excerpt)

ID CLASS
CLASS_

CODESPACE
FUNCTION

FUNCTION_
CODESPACE

USAGE
USAGE_

CODESPACE

1 NULL NULL Building group NULL Hotel NULL

GROUP_TO_CITYOBJECT

CITYOBJECT_ID CITYOBJECTGROUP_ID ROLE

2 1 Main building

4 1 Annex

CITYOBJECT (excerpt)

ID OBJECTCLASS_ID GML_ID ENVELOPE CREATION_DATE
TERMINATION_

DATE

2 26 Build1632 GEOMETRY 2015-02-02 09:26:07.441+01 NULL

4 26 Build1633 GEOMETRY 2015-02-02 09:26:07.441+01 NULL

1 23 Group1700 NULL 2015-02-02 09:26:07.441+01 NULL

64 3D Geodatabase for CityGML 2019

the CITYOBJECT table, because they are belonging to the namespace of a certain thematic

module and should be stored along with other attributes of that feature.

Figure 30: Database schema of the CityGML core elements

2.3.3.3 Tables for geometry representation

The representation of the geometry stored in table SURFACE_GEOMETRY differs

substantially from the UML chart explained in the CityGML specification; nevertheless, it

offers about the same functionality.

SURFACE_GEOMETRY, SURFACE_GEOMETRY_SEQ

In the database schema the geometry consists of planar surfaces which correspond each to one

entry in the table SURFACE_GEOMETRY. The surface-based geometry is stored as attribute

GEOMETRY (in each case exactly one planar polygon, possibly including holes). The implicit

geometry is stored as attribute IMPLICIT_GEOMETRY. The volumetric geometry is stored

as attribute SOLID_GEOMETRY and its boundary surfaces (outer shell) will be stored as

attribute GEOMETRY as well. Any surface may have textures or a colour on both sides.

Textures are stored within the tables which implement the appearance model (cf. chapter

2.2.3).

3D Geodatabase for CityGML 2019 65

The geometry information in the fields GEOMETRY and IMPLICIT_GEOMETRY of the table

SURFACE_GEOMETRY is limited as follows:

Table 3: Storage of polygonal geometry

A solid is the basis for 3-dimensional geometry. The extent of a solid is defined by the

boundary surfaces (outer shell). A shell is represented by a composite surface, where every

shell is used to represent a single connected component of the boundary of a solid. It consists

of a composite surface (a list of OrientableSurfaces) connected in a topological cycle. Unlike

a ring, a shell's elements have no natural sort order. Like rings, shells are simple. The

geometry in the field SOLID_GEOMETRY of the table SURFACE_GEOMETRY is limited as

follows:

Geometry storage in Surface Geometry – polygonal geometry

Oracle PostGIS

 SDO_GTYPE must have the type

Polygon, i.e. a polygon with 3D

coordinates (SDO_GTYPE = 3003),

 SDO_ETYPE must be 1003/2003

with SDO_INTERPRETATION = 1
(i.e. polygon with 3D coordinates in
the boundary, bounded just by line
segments, possibly including holes)

 In addition Oracle allows the
representation of a rectangle by
two corner points

(SDO_ETYPE=1003/2003, with

SDO_INTERPRETATION = 3)

 SDO_SRID of implicit geometries
can be any SRID Oracle supports. No
spatial index is defined on the
column by default.

 Only POLYGON Z is allowed, i.e. a
polygon with 3D coordinates

 Polygons might have holes

 The IMPLICIT_GEOMETRY column
has no SRID defined. Thus, entries
in that column will have the SRID 0
automatically

66 3D Geodatabase for CityGML 2019

Table 4: Storage of 3D geometry

Surfaces can be aggregated to form a complex of surfaces or the boundary of a volumetric

object. The aggregation of multiple surfaces, e.g. F1 to Fn, (IDs 6 to 10 in Figure 31 / Figure

32) is realized the way that the newly created surface tuple Fn+1 (ID 2) is not assigned a geo-

metry (cf. Table 5). Instead, the PARENT_ID of the surfaces F1 to Fn refer to the ID of Fn+1.

Figure 31: Geometry hierarchy for the solid geometry shown in Figure 32

In addition, a further tuple (ID 1) is introduced, which represent the solid and defines the root

element of the whole aggregation structure. Each surface references to its root, using the

ROOT_ID attribute. This information has big influence on the system performance, as it

allows to avoid recursive queries. If e.g. the retrieval of all surface elements forming a

specific building is of importance, simply those tuples have to be selected which contain the

Geometry Root
ID = 1

ROOT_ID=1

IS_SOLID=1

IS_COMPOSITE=0

LoD1 Surface
ID=2

PARENT_ID=1

ROOT_ID = 1

IS_SOLID=0

IS_COMPOSITE=1

LoDx Surface
ID=3

PARENT_ID=1

ROOT_ID = 1

…

Surface 5
ID=8

PARENT_ID=2

ROOT_ID = 1

IS_SOLID=0

IS_COMPOSITE=0

Surface 6
ID=8

PARENT_ID=2

ROOT_ID = 1

IS_SOLID=0

IS_COMPOSITE=0

Surface 7
ID=10

PARENT_ID=2

ROOT_ID = 1

IS_SOLID=0

IS_COMPOSITE=0

Surface 3
ID=6

PARENT_ID=2

ROOT_ID = 1

IS_SOLID=0

IS_COMPOSITE=0

Surface 4
ID=7

PARENT_ID=2

ROOT_ID = 1

IS_SOLID=0

IS_COMPOSITE=0

Geometry storage in Surface Geometry – 3D geometry

Oracle PostGIS

 SDO_GTYPE must have the type
Solid, i.e. a solid with 3D

coordinates (SDO_GTYPE = 3008)

 SDO_ETYPE must be 1007 (simple
solid) or 1008 (composite solid).

 A simple solid can be represented
by using several polygons as its

boundary (SDO_ETYPE=1007, with

SDO_INTERPRETATION = 1).
 The composite solid can be

constructed with a number of
simple solids, e.g. a composite
solid with 4 simple solids

(SDO_ETYPE=1008, with

SDO_INTERPRETATION = 4)

 Only POLYHEDRALSURFACE is
allowed, i.e. the outer shell of a
solid with 3D coordinates

 A simple polyhedral surface can be
represented by using several
polygons as its boundary

3D Geodatabase for CityGML 2019 67

related ROOT_ID. On the downside there also follows the limitation that each tuple in

SURFACE_GEOMETRY can only belong to one aggregate.

Various flags characterise the type of aggregation: IS_TRIANGULATED denotes a

TriangulatedSurface, IS_SOLID distinguishes between surface (0) and solid (1), and

IS_COMPOSITE defines whether this is an aggregate (e.g. MultiSolid, MultiSurface) or a

composite (e.g., CompositeSolid, CompositeSurface).

Based on these flags the geometry types listed in 5 can be distinguished. To distinguish a

MultiSolid from a MultiSurface its child elements have to be analysed: In case the child is a

Solid, the geometry can be identified as MultiSolid.

 isSolid isComposite isTriangulated Geometry
SOLID_

GEOMETRY

Polygon, Triangle,
Rectangle

 GEOMETRY
NULL

MultiSurface NULL NULL

CompositeSurface NULL NULL

TriangulatedSurface NULL NULL

Solid NULL GEOMETRY

MultiSolid NULL NULL

CompositeSolid NULL GEOMETRY

Table 5: Attributes determining aggregation types

Aggregated surfaces can be grouped again with other (compound) surfaces, by generating a

common parent. This way, arbitrary aggregations of Surfaces, CompositeSurfaces, Solids,

CompositeSolids can be formed. Since all tuples in an aggregated geometry refer to the same

ROOT_ID all tuples can be retrieved efficiently from the table by selecting those tuples with

the same ROOT_ID.

The aggregation schema allows for the definition of nested aggregations (hierarchy of

components). For example, a building geometry (CompositeSolid) can be composed of the

house geometry (CompositeSolid) and the garage geometry (Solid), while the house’s

geometry is further decomposed into the roof geometry (Solid) and the geometry of the house

body (Solid).

In addition, the foreign key CITYOBJECT_ID refers directly to the CityGML features to

which the geometry belongs. In order to select all geometries forming the city object one only

has to select those with the same CITYOBJECT_ID.

In order to provide a unique identifier in table SURFACE_GEOMETRY, the next available ID

value is provided by the sequence SURFACE_GEOMETRY_SEQ.

68 3D Geodatabase for CityGML 2019

Example: The geometry shown in the figure below consists of seven surfaces which form a

volumetric object. In the table it is represented by the following rows:

Figure 32: LoD 1 building - closed volume bounded by a CompositeSurface which consists of single polygons

Table 6: Excerpt of table SURFACE_GEOMETRY representing the example given in Figure 32

In addition, two further attributes are included in SURFACE_GEOMETRY: IS_XLINK and

IS_REVERSE.

IS_XLINK

CityGML allows for sharing of geometry objects between different geometries or different

thematic features using the XLink concept of GML3. For this purpose, the geometry object to

be shared is assigned an unique gml:id which may be referenced by a GML geometry

property element through its xlink:href attribute. This concept allows for avoiding data

redundancy. Furthermore, CityGML does not employ the built-in topology package of GML3

but rather uses the XLink concept for the explicit modelling of topology (see [Gröger et al.

2008], p. 25).

Although an XLink can be seen as a pointer to an existing geometry object the

SURFACE_GEOMETRY table does not offer a foreign key attribute which could be used to

refer to another tuple within this table. The main reason for this is that the referenced tuple

typically belongs to a different geometry aggregate, e.g. a different gml:Solid object, and thus

contains different values for its ROOT_ID and PARENT_ID attributes. Therefore, foreign

keys would violate the aggregation mechanism of the SURFACE_GEOMETRY table.

The recommended way of resolving of XLink references to geometry objects requires two

steps: First, the referenced tuple of the SURFACE_GEOMETRY table has to be identified by

4

3

7

5

6

SURFACE_GEOMETRY

ID GMLID
PARENT_

ID

ROOT_

ID

IS_

SOLID

IS_

COMPOSITE
GEOMETRY

SOLID_

GEOMETRY

1 UUID_lod1 NULL 1 1 0 NULL GEOMETRY
for Solid

2 lod1Surface 1 1 0 1 NULL NULL

3 Left1 2 1 0 0 GEOMETRY for surface 3 NULL

4 Front1 2 1 0 0 GEOMETRY for surface 4 NULL

5 Right1 2 1 0 0 GEOMETRY for surface 5 NULL

6 Back1 2 1 0 0 GEOMETRY for surface 6 NULL

7 Roof1 2 1 0 0 GEOMETRY for surface 7 NULL

Surface Number

3D Geodatabase for CityGML 2019 69

searching the GMLID column for the referenced gml:id value. Second, all attribute values of

the identified tuple have to be copied to a new tuple. However, the ROOT_ID and

PARENT_ID of this new tuple have to be set according to the context of the referencing

geometry property element.

Please note:

1. If the referenced tuple is the top of an aggregation (sub)hierarchy within the

SURFACE_GEOMETRY table, then also all nested tuples have to be recursively

copied and their ROOT_ID and PARENT_ID have to be adapted.

2. Copying existing entries of the SURFACE_GEOMETRY table results in tuples sharing

the same GMLID. Thus, these values cannot be used as a primary key.

When it comes to exporting data to a CityGML instance document, XLink references can be

rebuilt by keeping track of the GMLID values of exported geometry tuples. Generally, for

each and every tuple to be exported it has to be checked whether a geometry object with the

same GMLID value has already been processed. If so, the export routine should make use of

an XLink reference.

However, checking the GMLID of each and every tuple may dramatically slow down the

export process. For this reason, the IS_XLINK flag of the SURFACE_GEOMETRY has been

introduced. It may be used to explicitly mark just those tuples for which a corresponding

check has to be performed. The IS_XLINK flag should be used in the following manner. The

Importer/Exporter provides a corresponding reference implementation.

1. During import

a. By default, the IS_XLINK flag is set to “0”.

b. If existing tuples have to be copied due to an XLink reference, IS_XLINK has to

be set to “1” for each and every copy. Please note, that this rule comprises all

copies of nested tuples.

c. Furthermore, IS_XLINK has to be set to “1” on the original tuple addressed by

the XLink reference. If this tuple is the top of an aggregation (sub)hierarchy,

IS_XLINK remains “0” for all nested tuples.

2. During export

a. The export process just has to keep track of the GMLID values of those geometry

tuples where IS_XLINK is set to “1”.

b. When it comes to exporting a tuple with IS_XLINK set to “1”, the export process

has to check whether it already came across the same GMLID and, thus, can make

use of an XLink reference in the instance document.

c. For each tuple with IS_XLINK=0 no further action has to be taken.

Especially due to (2c), the IS_XLINK attribute helps to significantly speed up the export

process when rebuilding XLink references. Please note, that this is the only intended purpose

of the IS_XLINK flag.

70 3D Geodatabase for CityGML 2019

IS_REVERSE

The IS_REVERSE flag is used in the context of gml:OrientableSurface geometry objects.

Generally, an OrientableSurface instance cannot be represented within the

SURFACE_GEOMETRY table since it cannot be encoded using the flags IS_SOLID,

IS_COMPOSITE, and IS_TRIANGULATED (cf. Table 5). However, the IS_REVERSE flag

is used to encode the information provided by an OrientableSurface and to rebuild

OrientableSurfaces during data export.

According to GML3, an OrientableSurface consists of a base surface and an orientation. If the

orientation is “+”, then the OrientableSurface is identical to the base surface. If the orientation

is “-“, then the OrientableSurface is a reference to a surface with an up-normal that reverses

the direction for this OrientableSurface.

During import, only the base surfaces are written to the SURFACE_GEOMETRY table. The

following rules have to be obeyed in the context of OrientableSurface:

1. If the orientation of the OrientableSurface is “-“, then

a. The direction of the base surface has to be reversed prior to importing it (generally,

this means reversing the order of coordinate tuples).

b. The IS_REVERSE flag has to be set to “1” for the corresponding entry in the

SURFACE_GEOMETRY table.

c. If the base surface is an aggregate, then steps (a) and (b) have to be recursively

applied for all of its surface members.

2. If the OrientableSurface is identical to its base surface (i.e., if its orientation is “+”),

then the base surface can be written to the SURFACE_GEOMETRY table without

taking any further action. The IS_REVERSE flag has to be set to “0” (which is also

the default value).

3. Please note, that it is not sufficient to just rely on the gml:orientation attribute of an

OrientableSurface in order to determine its orientation since OrientableSurfaces may

be arbitrarily nested.

Flipping the direction of the base surface in step (1a) is essential in order to guarantee that the

objects stored within the GEOMETRY column are always correctly oriented. This enables

applications to just access the GEOMETRY column without having to interpret further

attributes of the SURFACE_GEOMETRY table. For example, in the case of a viewer

application this allows for a fast rendering of a virtual 3d city scene.

When exporting CityGML instance documents, the IS_REVERSE flag can be used to rebuild

OrientableSurface in the following way:

1. If the IS_REVERSE flag is set to “1” for a table entry, the exporter routine has to

reverse the direction of the corresponding surface object prior to exporting it (again,

this means reversing the order of coordinate tuples).

2. The surface object has to be wrapped by a gml:OrientableSurface object with

gml:orientation=”-”.

3D Geodatabase for CityGML 2019 71

3. If the surface object is an aggregate, its surface members having the same value for

the IS_REVERSE flag may not be embraced by another OrientableSurface. However,

if the IS_REVERSE value changes, e.g., from “1” for the aggregate to “0” for the

surface member, also the surface member has to be embraced by a

gml:OrientableSurface according to (2). Since there might be nested structures of

arbitrary depth this third rule has to be applied recursively.

Like with the IS_XLINK flag, the Importer/Exporter tool provides a reference

implementation of the IS_REVERSE flag.

2.3.3.4 Appearance Model

APPEARANCE, APPEARANCE_SEQ

The table APPEARANCE contains information about the surface data of objects (attribute

DESCRIPTION), its category is stored in attribute THEME. Since each city model or city

object may store its own appearance data, the table APPEARANCE is related to the tables for

the base classes CityObject and CityModel by two foreign keys which may be used

alternatively. The classes Appearance and _SurfaceData represent features, which can be

referenced by GML identifiers. For this reason, the attributes GMLID and

GMLID_CODESPACE were added to the corresponding tables.

72 3D Geodatabase for CityGML 2019

Figure 33: Appearance database schema

SURFACE_DATA, TEX_IMAGE, APPEAR_TO_SURFACE_DATA

An appearance is composed of data for each surface geometry object. Information on the data

types and its appearance are stored in table SURFACE_DATA.

IS_FRONT determines the side a surface data object applies to (IS_FRONT=1: front face

IS_FRONT=0: back face of a surface data object). The OBJECTCLASS_ID column denotes

if materials or textures are used for the specific object (values: X3DMaterial, Texture or

GeoreferencedTexture). Materials are specified by the attributes X3D_xxx which define its

graphic representation. Details on using georeferenced textures, such as orientation and

reference point, are contained in attributes GT_xxx. See chapter 2.2.3 for more information

on SURFACE_DATA attributes or the CityGML specification [Gröger et al. 2012, p. 33-45]

which explains the texture mapping process in detail.

Raster-based 2D textures are stored in table TEX_IMAGE. The name of the corresponding

images for example is specified by the attribute TEX_IMAGE_URI. The texture image can be

stored within this table in the attribute TEX_IMAGE_DATA using the BLOB data type under

Oracle and the BYTEA data type under PostgreSQL.

3D Geodatabase for CityGML 2019 73

Table APPEAR_TO_SURFACE_DATA represents the interrelationship between appearances

and surfaces for different themes.

TEXTUREPARAM

Attributes for mapping textures to objects (point list or transformation matrix) which are

defined by the CityGML classes _TextureParameterization, TexCoordList, and TexCoordGen

are stored in the table TEXTUREPARAM.

Figure 34: Simple example explaining texture mapping using texture coordinates

TEXTUREPARAM

SURFACE_
GEOMETRY

_ID

IS_TEXTURE
_PARAME

TRIZATION

WORLD_TO
_TEXTURE

TEXTURE_
COORDINATES

SURFACE
_DATA_ID

7 1 NULL GEOMETRY 20

… … … … …

Table 7: Example for table TEXTUREPARAM

Texture coordinates are applicable to polygonal surfaces, whose boundaries are described by a

closed linear ring (last coordinate is equal to first). Coordinates are stored with a geometry

data type. The WORLD_TO_TEXTURE attribute defines a transformation matrix from a

location in world space to texture space. For more details see the CityGML Implementation

Specification [Gröger et al. 2012].

Figure 35: Visualisation of a simple building in LoD1 and LoD2 using the appearance model. Two themes are

defined for the building and the surrounding terrain: (a) building in summertime and (b) building in wintertime

(a) (b)

74 3D Geodatabase for CityGML 2019

Six surface representations are listed in table SURFACE_DATA (cf. Table 10). First of all, a

homogeneous material is defined (ID=1), represented by a 3-component (RGB) colour value

which will be used for both appearances (summer and winter). This also applies to a general

side façade texture (ID=3, Figure 36 right) which is repeated (wrapped) to fill the entire

surface. For each of the front side, the back side and the ground two images are available:

parameterized ones for the sides (Figure 36 left and middle) and georeferenced ones for the

ground and the roof surfaces (Figure 38). The information of textures is stored in a separate

table TEX_IMAGE. The coordinates for mapping the textures to the object are stored in table

TEXTUREPARAM. For the general side texture (SURFACE_DATA_ID=3) five coordinate

pairs are needed to define a closed ring (here: rectangle). Table SURFACE_GEOMETRY

contains the information of all geometry parts that form the building and its appropriate 3D

coordinates (cf. tables on the next page).

See the following page for an example of the storage of appearances in the city database.

Figure 36 and Figure 38 show the images used for texturing a building in LoD2. In LoD1, a

material definition is used to define the wall colors of the building.

Table 8 to Table 11 show a combination of tables representing the building’s textures. There

are different images available for summer and winter resulting in two themes: Summer and

Winter. The tuples within the tables are color-coded according to their relation to the

respective theme:

 Green: only summer related data

 Light-grey: only winter related data

 Orange: both summer and winter related data

Figure 37 shows the LoD2 representation of summer appearances (theme Summer).

3D Geodatabase for CityGML 2016 75

APPEARANCE

ID GMLID THEME CITYMODEL_ID CITYOBJECT_ID

...

1 App1 Summer 1000

2 App2 Winter 1000

...

 The relation to the building feature is given by the foreign key CITYOBJECT_ID

 SURFACE_DATA_ID = 4 SURFACE_DATA_ID = 6 SURFACE_DATA_ID = 3

SURFACE_DATA

ID IS_FRONT OBJECTCLASS_ID X3D_DIFFUSE_COLOR TEX_IMAGE_ID TEX_WRAP_MODE GT_ORIENTATION GT_REFERENCE_POINT

7 1 53 (X3DMaterial) 1.0 0.6 0.0

3 1 54 (ParameterizedTexture) 31 wrap

4 1 54 32 none

6 1 54 33 none

8 1 55 (GeoreferencedTexture) 34 none 0.05 0.0 0.0 0.066667 GEOMETRY

5 1 55 35 none 0.05 0.0 0.0 0.066667 GEOMETRY

APPEAR_TO_SURFACE_DATA
APPEARANCE_ID SURFACE_DATA_ID COMMENTS

1 7 LoD1 S

2 7 LoD1 W

1 8 LoD2 ground/roof S

1 3 LoD2 façade S

1 4 LoD2 front/back S

2 5
LoD2 ground/roof
W

2 3 LoD2 façade W

2 6 LoD2 front/back W

Table 8: Excerpt of table APEARANCE

Table 9: APPEAR_TO_SURFACE table

front_back_

summer.png

front_back_

winter.png
facade.png

summer & winter

Figure 36: Images for parameterized textures
Figure 37: Surface geometries for the building in LoD2 (the IDs for LoD1 are

the same as in Figure 31)

TEX_IMAGE

ID TEX_IMAGE_DATA TEX_IMAGE_URI

31 BLOB(…) facade.png

32 BLOB(…) front_back_summer.png

33 BLOB(…) front_back_winter.png

34 BLOB(…) ground_summer.png

35 BLOB(…) ground_winter.png

Table 10: Excerpt of table SURFACE_DATA and table TEX_IMAGE

TEXTUREPARAM
SURFACE_

GEOMETRY_ID
IS_TEXTURE_

PARA-METRIZATION
WORLD_TO_

TEXTURE
TEXTURE_COORDINATES

SURFACE_
DATA_ID

COMMENTS

30 0 NULL NULL 8 LoD 2 ground S

16 0 NULL NULL 8 LoD 2 roof left S

17 0 NULL NULL 8 LoD 2 roof right S

13 1 NULL GEOMETRY 4 LoD 2 front S

15 1 NULL GEOMETRY 4 LoD 2 back S

12 1 NULL GEOMETRY 3
LoD 2 façade left S/W

11 1 NULL GEOMETRY 3

14 1
-0.4 0.0 0.0 1.0
 0.0 0.0 0.3333 0.0
 0.0 0.0 0.0 1.0

NULL 3 LoD 2 façade right S/W

30 0 NULL NULL 5 LoD2 ground W

16 0 NULL NULL 5 LoD 2 roof left W

17 0 NULL NULL 5 LoD 2 roof right W

13 1 NULL GEOMETRY 6 LoD 2 front W

15 1 NULL GEOMETRY 6 LoD 2 back W

2 0 NULL NULL 7 LoD1 walls S/W

10 0 NULL NULL 8 LoD1 roof S/W

Ground_

winter.png

SURFACE_DATA_ID = 5

Table 11: Table TEXTUREPARAM

Ground_

summer.png

SURFACE_DATA_ID = 8

Figure 38: Images for georeferenced textures (The

image round_winter.png is assigned to the terrain and

the roof surfaces of the building both in LoD1 and

LoD2 within the winter theme (a),

ground_summer.png within the summer theme (b))

3D Geodatabase for CityGML 2016 76

2.3.3.5 Building Model

Figure 39: Building database schema

3D Geodatabase for CityGML 2019 77

BUILDING

The building model, described in paragraph 2.2.4.2 at the conceptual level, is realised by the

tables shown in Figure 39. The three CityGML classes AbstractBuilding, Building and

BuildingPart are merged into the single table BUILDING. They can be distinguished on

behalf of the OBJECTCLASS_ID. The subclass relationship with CITYOBJECT arises from

using identical IDs, i.e. for each tuple in BUILDING there must exist a tuple within

CITYOBJECT with the same ID.

The component hierarchy within a building is realized by the foreign key

BUILDING_PARENT_ID which refers to the superordinate building (aggregate) and

contains NULL, if such does not exist. This way, a tree-like structure arises also for building

aggregates. BUILDING_PARENT_ID points at the predecessor in the tree. The foreign key

BUILDING_ROOT_ID refers directly to the top level (root) of a building tree. In order to

select all parts forming a building one only has to select those with the same

BUILDING_ROOT_ID (cf. Table 12).

Table 12: Tree-like structure for recursive decomposition of buildings

The meaning and the name of most fields are identical to those of the attributes in the UML

diagram (cf. Figure 7). Like for CityObjectGroups there are additional _CODESPACE

columns for the attributes class, function and usage. A _CODESPACE column is also added

for the roofType attribute as it is specified as gml:CodeType in CityGML. For every attribute

including measure information like measuredHeight or storeyHeightsAboveGround etc. an

additional _UNIT column is provided to specify the unit of measurement.

Geometry is represented by several foreign keys LOD0_FOOTPRINT_ID,

LOD0_ROOFPRINT_ID, LODx_MULTI_SURFACE_ID (1≤ x ≤ 4), and LODx_SOLID_ID

(1 ≤ x ≤ 4) which refer to entries in the SURFACE_GEOMETRY table and represent each

LoD’s surface geometry.

Optionally the geometry of the terrain intersection curve is stored in the attribute

LODx_TERRAIN_INTERSECTION (1 ≤ x ≤ 4) using database geometry type (see Table

13). Additional line-typed building elements such as antennas are optionally modelled by the

attribute LODx_MULTI_CURVE (1 ≤ x ≤ 4, using the same database geometry like for terrain

intersection curves).

BUILDING

ID
BUILDING_

PARENT_ID

BUILDING_

ROOT_ID
...

LOD0_FOOT

PRINT_ID

LOD0_ROOF

PRINT_ID

LOD1_MULTI_

SURFACE_ID
...

LOD4_

SOLID_ID

1 NULL 1 10 NULL NULL NULL

2 1 1 NULL NULL 20 NULL

3 1 1 NULL NULL 30 NULL

4 2 1 NULL NULL NULL 400

5 2 1 NULL NULL NULL 500

6 3 1 NULL NULL NULL 600

7 3 1 NULL NULL NULL 700

78 3D Geodatabase for CityGML 2019

Table 13: Storage of composite line string geometry

THEMATIC_SURFACE

The table THEMATIC_SURFACE represents thematic boundary features. CityGML class

_BoundarySurface has a number of concrete subclasses representing different types of

surfaces. One possibility would be to represent each of these classes by its own table. Here,

we choose the approach to create one table representing all those classes. No own tables for

the subclasses of _BoundarySurface were created in the relational schema; instead, the type of

the boundary surface is given by the foreign key OBJECTCLASS_ID in the table

THEMATIC_SURFACE. Allowed integer values:

 30 (CeilingSurface)

 31 (InteriorWallSurface)

 32 (FloorSurface)

 33 (RoofSurface)

 34 (WallSurface)

 35 (GroundSurface)

 36 (ClosureSurface)

 60 (OuterCeilingSurface)

 61 (OuterFloorSurface)

If a CityGML ADE is used that extends any of the classes named above, further values for

OBJECTCLASS_ID may be added by the ADE manager. Their concrete numbers depend on

the ADE registration (cf. section 6.3.3.1).

The aggregation relation between buildings and the corresponding boundary surfaces results

from the foreign key BUILDING_ID of the table THEMATIC_SURFACE which refers to the

ID of the respective building. The same applies to references between surfaces of building

installations (BUILDING_INSTALLATION_ID) and rooms (ROOM_ID). Thematic surfaces

and the corresponding parent feature should share their geometry: the geometry should be

defined only once and be used conjointly as XLinks. The SURFACE_GEOMETRY, which for

example geometrically defines a roof, should at the same time be a part of the volume

geometry of the parent feature the roof belongs to.

Geometry storage in Building table – Intersection curves

Oracle PostGIS

 SDO_GTYPE must have the type
MultiCurve / MultiLine, i.e. a
composite geometry of different
line string segments with 3D

coordinates (SDO_GTYPE = 3006)

 SDO_ETYPE must be 1 (straight
line segments) as curved
geometries are not allowed in
CityGML and

SDO_INTERPRETATION must be 2

 Only MULTILINESTRING Z is
allowed, i.e. a composite
geometry of different line string
segments with 3D coordinates

 The geometry type MULTICURVE is
not used as CityGML does not allow
geometry with arcs

3D Geodatabase for CityGML 2019 79

Example:

In Figure 40, a building geometry is shown consisting of several surface geometries enclosing

the outer building shell. Please note that the left wall (ID 5) is composed of two polygons

(IDs 11 and 12) and that the roof is split into a left and a right part (IDs 20 and 21) each of

which again consists of two polygons, the roof surface and an overhanging part. In the

SURFACE_GEOMETRY table (cf. Table 14), the attribute IS_COMPOSITE is set to 1 for the

tuples with IDs 5, 20 and 21 characterising them as composite surfaces. The surface geo-

metries are semantically classified as roof, wall or ground surface by adding an entry into the

THEMATIC_SURFACE table and linking this entry with the corresponding geometry tuple in

SURFACE_GEOMETRY. In Table 15, an excerpt of the THEMATIC_SURFACE table is

depicted. The tuple with ID 70 represents a RoofSurface by setting the OBJECTCLASS_ID

attribute to the value 33. For its geometry, the tuple references ID 21 in the

SURFACE_GEOMETRY table via the LOD2_MULTI_SURFACE_ID attribute (cf. Table 15).

Figure 40: LoD2 building with roof overhangs, highlighted in red

SURFACE_GEOMETRY (excerpt)

ID GMLID
PARENT_

ID
ROOT_

ID
IS_

SOLID
IS_

COMPOSITE
IS_

XLINK
GEOMETRY

3 UUID_LoD2 NULL 3 0 0 0 NULL

5 Left_Wall 3 3 0 1 0 NULL

11 Left_Wall_1 5 3 0 0 0 Geometry comp (5-1) surface 11

12 Left_Wall_2 5 3 0 0 0 Geometry comp (5-2) surface 12

13 Front 3 3 0 0 0 Geometry surface 13

14 Right_Wall 3 3 0 0 0 Geometry surface 14

15 Back 3 3 0 0 0 Geometry surface 15

16 Roof_part_1 21 3 0 0 1 Geometry surface 16

17 Roof_part_2 20 3 0 0 1 Geometry surface 17

18 Overhang_1 21 3 0 0 0 Geometry of overhang 18

19 Overhang_2 20 3 0 0 0 Geometry of overhang 19

20 Roof_right 3 3 0 1 0 NULL

21 Roof_left 3 3 0 1 0 NULL

… … … … … … … …

30 UUID_Solid NULL 30 1 0 0 NULL

31 UUID_CS 30 30 0 1 0 NULL

32 Roof_part_1 31 30 0 0 1 Geometry surface 16

33 Roof_part_2 31 30 0 0 1 Geometry surface 17

… … … … … … … …

Table 14: Excerpt of table SURFACE_GEOMETRY. Geometry objects are stored as database geometry datatype

80 3D Geodatabase for CityGML 2019

THEMATIC_SURFACE (excerpt)
ID …. OBJECTCLASS_ID BUILDING_ID ROOM_ID LOD2_MULTI_SURFACE_ID ...

...

70 33 1 NULL 21

....

Table 15: Excerpt of table THEMATIC_SURFACE

In addition to thematic boundary surfaces, assume that we also want to represent the building

volume as separate solid geometry that is stored with the building itself. For this purpose,

another tuple with ID 30 is added to the SURFACE_GEOMETRY table whose IS_SOLID

attribute is set to 1. This tuple is referenced from BUILDING using the LOD2_SOLID_ID

attribute (cf. Table 16).

According to the CityGML specification, the surface geometries forming the solid geometry

shall reference the geometries of the thematic boundary surfaces using GML’s XLink

mechanism. Therefore, the referenced geometries have to be copied and inserted as new

tuples into SURFACE_GEOMETRY. Moreover, the IS_XLINK flag has to be set to 1 for the

referenced geometries and their copies (see chapter 2.3.3.3 for details). In Table 15, this is

illustrated for the geometries with ID 32 and 33, which are copies of the tuples with ID 16

and 17 respectively. Note, that the overhanging roof parts (IDs 18 and 19) are not referenced

by the solid geometry, because they are dangling surfaces and not part of the volume.

BUILDING (excerpt)
ID …. BUILDING_ROOT_ID ... LOD1_SOLID_ID LOD2_SOLID_ID

...

1 1 NULL 30

....

Table 16: Excerpt of table BUILDING

BUILDING_INSTALLATION

The UML classes BuildingInstallation and IntBuildingInstallation are realized by the single

table BUILDING_INSTALLATION. Internal and external objects are distinguished by the

attribute OBEJCTCLASS_ID (external 27, internal 28). The relation to the corresponding

parent feature arises from the foreign key BUILDING_ID or ROOM_ID, whereas the surface

based geometry in LoD 2 to 4 is given via the foreign keys LODx_BREP_ID (2 ≤ x ≤ 4)

referring to the table SURFACE_GEOMETRY.

Additional point- or line-typed building installation elements such as antennas can be

modelled by the attribute LODx_OTHER_GEOM (2 ≤ x ≤ 4) using the database geometry type

(any GTYPE, ETYPE etc. in Oracle and GEOMETRY Z in PostGIS). Since CityGML 2.0.0

building installations can also be represented by using prototypes which are stored as library

objects implicitly. The information needed for mapping prototype objects to buildings

consists of a base point geometry (LODx_IMPLICIT_REF_POINT (2 ≤ x ≤ 4)), a transfor-

mation matrix (LODx_IMPLICIT_TRANSFORMATION (2 ≤ x ≤ 4)), which is stored as a

string, and a foreign key reference to the IMPLICIT_GEOMETRY table

(LODx_IMPLICIT_REP_ID (2 ≤ x ≤ 4)) where a reference to an explicit surface based

geometry in LoD 2 to 4 is saved.

3D Geodatabase for CityGML 2019 81

OPENING

Openings (CityGML class Opening) are represented by the table OPENING and are only

allowed in LoD3 and 4. No individual tables are created for the subclasses. Instead, the

differentiation is achieved by the foreign key OBJECTCLASS_ID which refers to the

attribute ID of the (meta) table OBJECTCLASS. Valid integer values are 39 (Door) and 38

(Window). If a CityGML ADE is used that extends any of the two classes Door or Window,

further values for OBJECTCLASS_ID may be added by the ADE manager. Their concrete

numbers depend on the ADE registration (cf. section 6.3.3.1).

Table OPENING_TO_THEM_SURFACE associates an opening ID in table OPENING with a

thematic surface ID in table THEMATIC_SURFACE representing the m:n relation between

both tables. An address can be assigned to a door (table OPENING) by the foreign key

ADDRESS_ID in the table OPENING. Furthermore, addresses may be assigned to buildings

(see table ADDRESS for detailed information).

Like with building installations openings can be modelled via implicit geometry since

CityGML 2.0.0. Thus, the OPENING table does contain the columns

LODx_IMPLICIT_REP_ID, LODx_IMPLICIT_REF_POINT and LODx_IMPLICIT_-

TRANSFORMATION, too.

ROOM

Room objects are allowed in LoD4 only. Therefore, the only keys

LOD4_MULTI_SURFACE_ID and LOD4_SOLID_ID are referring to the table

SURFACE_GEOMETRY. Additionally, the foreign keys to tables BUILDING and

CITYOBJECT are necessary to map the relationship to these tables.

BUILDING_FURNITURE

As rooms may be equipped with furniture (chairs, wardrobes, etc.), a foreign key referencing

to ROOM_ID is mandatory. The geometry of furniture objects can be described explicitly

using the attribute LOD4_OTHER_GEOM representing the point- or line-typed entities or

using the foreign key LOD4_BREP_ID referring to the table SURFACE_GEOMETRY.

Alternatively, the geometry of furniture objects may be represented by using prototypes

(ImplicitGeometry) which are stored as library objects. Again, the information needed for

mapping prototype objects to rooms consists of a base point, a transformation matrix and a

reference to the IMPLICIT_GEOMETRY table.

ADDRESS, ADDRESS_TO_BUILDING, and ADDRESS_SEQ

Addresses are realized by the table ADDRESS. The m:n relation with buildings arises from the

table ADRESS_TO_BUILDING which associates a building ID and an address ID. An

address can also be assigned to a door (table OPENING) by the foreign key ADDRESS_ID in

the table OPENING. The same applies to addresses of bridges (incl. a table

ADRESS_TO_BRIDGE) and bridge openings.

The next available ID for the table ADDRESS is provided by the sequence ADDRESS_SEQ.

3D Geodatabase for CityGML 2019 82

2.3.3.6 Bridge Model

Figure 41: Bridge database schema

3D Geodatabase for CityGML 2019 83

The bridge model, described in paragraph 2.2.4.3 at the conceptual level, is realised by the

tables shown in Figure 41. The relational schema is identical to the building schema for the

most parts except for the naming. Please, refer to the explanation of the building schema on

the previous pages for a complete understanding. The main differences to the building schema

are the following:

 Bridges cannot be modelled in LoD 0. Therefore, no corresponding columns appear in

the BRIDGE table.

 CityGML features belonging to bridges, such as boundary surfaces, installations,

openings, rooms and furniture, are mapped to separate specific tables and are not

stored in already existent ones (e.g. THEMATIC_SURFACE, OPENING, ROOM). Thus,

values in OBJECTCLASS_ID columns are different as well. The reason for this is to

provide a schema that is as close to the UML model as possible. There are slight

differences between the building and the bridge model that would lead to ambiguous

references e.g. a boundary surface of the building namespace cannot reference to a

bridge construction element.

 OBJECTCLASS_ID of table BRIDGE_THEMATIC_SURFACE allows the values:

o 68 (BridgeCeilingSurface),

o 69 (InteriorBridgeWallSurface)

o 70 (BridgeFloorSurface),

o 71 (BridgeRoofSurface),

o 72 (BridgeWallSurface),

o 73 (BridgeGroundSurface),

o 74 (BridgeClosureSurface),

o 75 (OuterBridgeCeilingSurface),

o 76 (OuterBridgeFloorSurface).

If a CityGML ADE is used that extends any of the classes named above, further values

for OBJECTCLASS_ID may be added by the ADE manager. Their concrete numbers

depend on the ADE registration (cf. section 6.3.3.1).

 In the BRIDGE_INSTALLATION table external bridge installations can be identified

by the OBEJCTCLASS_ID 65 and internal ones by 66.

 The CityGML class BridgeConstructionElement is represented by the table

BRIDGE_CONSTR_ELEMENT. Its schema is analogue to the

BRIDGE_INSTALLATION table for the most parts. The relation to the corresponding

bridge results from the foreign key BRIDGE_ID. Explicit and implicit geometry or a

decomposition through boundary surfaces is possible. Additionally, terrain

intersections curves of construction elements can also be stored.

 The OBJECTCLASS_ID column in table BRIDGE_OPENING can be of integer value

79 (BridgeDoor) or 78 (BridgeWindow). They are associated to entries in the table

BRIDGE_THEMATIC_SURFACE via the BRIDGE_OPEN_TO_THEM_SRF link

table. If a CityGML ADE is used that extends any of the two classes BridgeDoor or

BridgeWindow, further values for OBJECTCLASS_ID may be added by the ADE

manager. Their concrete numbers depend on the ADE registration (cf. section 6.3.3.1).

Like openings of building, bridge openings can have addresses assigned to it.

84 3D Geodatabase for CityGML 2019

2.3.3.7 CityFurniture Model

The CityGML feature class CityFurniture and its attributes specified in the UML (cf. Figure

13) diagram are directly mapped the CITY_FURNITURE table and its corresponding

columns.

Figure 42: CityFurniture database schema

The geometry of city furniture objects is represented either as a surface-based geometry object

(LODx_BREP_ID, where 1 ≤ x ≤ 4) related to table SURFACE_GEOMETRY, as a point- or

line-typed object (LODx_OTHER_GEOM, where 1 ≤ x ≤ 4) or as implicit geometry

LODx_IMPLICIT_REP_ID, LODx_IMPLICIT_REF_POINT,

LODx_IMPLICIT_TRANSFORMATION with 1 ≤ x ≤ 4). Optionally terrain intersection

curves can be stored for city furniture objects.

3D Geodatabase for CityGML 2019 85

2.3.3.8 Digital Terrain Model

A tuple in the table RELIEF_FEATURE represents a complex relief object, which consists of

different relief components. It has an attribute LOD that describes the affiliation of the relief

object to a certain level of detail (LoD) of the city model. The individual components of a

complex relief object are stored in the tables BREAKLINE_RELIEF, TIN_RELIEF,

MASSPOINT_RELIEF and RASTER_RELIEF. Every relief component has an attribute LOD

that describes the affiliation to a certain level of detail (resolution, accuracy). However,

individual components of a complex relief object may belong to different LoD and may be

heterogeneous, i.e. a mixture of TINs, grids and mass points. Optionally, the geometrical

separation between the individual relief components of a complex relief object can be realized

via polygons (attribute EXTENT), which specify the validity area of the relief component.

Every relief component has an attribute NAME that is used for naming of the component. The

relief as well as every relief component are derived from CITYOBJECT and receive the same

ID as the CityObject. Table RELIEF_FEAT_TO_REL_COMP represents the interrelationship

between relief features and relief components.

Figure 43: Digital Terrain Model database schema

A raster relief is the only feature in CityGML that can be described by a grid coverage.

Corresponding database types are SDO_GEORASTER in Oracle Spatial 11g or higher (not

available in Oracle Locator) and RASTER in PostGIS 2.0 or higher. In Oracle for each table

86 3D Geodatabase for CityGML 2019

that stores SDO_GEORASTER an additional table of type SDO_RASTER is mandatory (raster

data table = RDT). It stores the metadata of the SDO_GEORASTER.

In case of that a grid representation is introduced to other features in CityGML in the future,

numerous RDT tables would be created when storing grids along with the thematic tables.

Thus, a central table called GRID_COVERAGE is used to register all grid data and to prevent

numerous additional tables in the 3DCityDB schema. This concept is analogue to the storage

of surface-based geometry whereas SURFACE_GEOMETRY is the central table.

Since Oracle Spatial 11g the SDO_GEORASTER type supports Oracle Workspace Manager.

Therefore, the table GRD_COVERAGE_RDT can be versioned for history management.

However, Oracle Spatial doesn’t allow user to version-enable the tables, where GeoRaster

objects are stored. Hence, the table GRID_COVERAGE cannot be versioned using the Oracle

Workspace Manager.

Geometry attributes for different relief components are limited to these value domains:

BREAKLINE_RELIEF

 BREAK_LINES and RIDGE_OR_VALLEY_LINES

o Oracle: MultiLine (GTYPE 3006)

o PostGIS: MultiLineString Z

TIN_RELIEF

 STOP_LINES and BREAK_LINES

o Oracle: MultiLine (GTYPE 3006)

o PostGIS: MultiLineString Z

 RELIEF_POINTS

o Oracle: MultiPoint (GTYPE 3001 or 3005)

o PostGIS: MultiPoint Z

 TIN

o TIN triangles could be stored as triangulated surfaces in table

SURFACE_GEOMETRY

MASSPOINT_RELIEF

 RELIEF_POINTS

o Oracle: MultiPoint (GTYPE 3001 or 3005)

o PostGIS: MultiPoint Z

RELIEF_COMPONENT

 EXTENT (defines the validity extents of each relief component)

o Oracle: Polygon (GTYPE 3003, ETYPE 1003, SDO_ INTERPRETATION 1

or 3 (optimized rectangle))

o PostGIS: Polygon Z

3D Geodatabase for CityGML 2019 87

2.3.3.9 Generic Objects and Attributes

3D city models will most likely contain attributes, which are not explicitly modelled in

CityGML. Moreover, there may be 3D objects that are not covered by the thematic classes of

CityGML. Generic objects and attributes help to support the storage of such data.

GENERIC_CITYOBJECT

For generic objects the full variety of different geometrical representations known from other

tables is offered. Explicit (LODx_BREP_ID, LODx_OTHER_GEOM) and implicit geometry

(LODx_IMPLICIT_REP_ID, LODx_IMPLICIT_REF_POINT,

LODx_IMPLICIT_TRANS-FORMATION) as well as terrain intersection curves

(LODx_TERRAIN_INTERSECTION) (all with 0 ≤ x ≤ 4).

Figure 44: GenericCityObject and generic attributes database schema

88 3D Geodatabase for CityGML 2019

CITYOBJECT_GENERICATTRIB, CITYOBJECT_GENERICATT_SEQ

The table CITYOBJECT_GENERICATTRIB is used to represent the concept of generic

attributes. However, the creation of a table for every type of attribute was omitted. Instead a

single table CITYOBJECT_GENERICATTRIB represents all types and the types are

differentiated via the values of the attribute DATATYPE.

The table provides fields for every data type, but only one of those fields is relevant in each

case. An overview of the meaning of the entries in the field DATATYPE is given in Table 17.

The relation between the generic attribute and the corresponding CityObject is established by

the foreign key CITYOBJECT_ID.

DATATYPE attribute type

1 STRING

2 INTEGER

3 REAL

4 URI

5 DATE

6 MEASURE

7 Group of generic attributes

8 BLOB

9 Geometry type

10 Geometry via surfaces in the table SURFACE_GEOMETRY

Table 17: Attribute type

Please note that the binary and geometric data types (incl. geometry via surfaces) are not

supported by CityGML and cannot be exported using the CityGML Import / Export tool!

But, if a user wants to add additional attributes to thematic tables, he should use the schema of

the CITYOBJECT_GENERICATTRIB table rather than adding additional columns to

existing tables, because only in this way the Import / Export tool can automatically write them

to CityGML.

Moreover, generic attributes can be grouped using the CityGML class genericAttributeSet.

Since genericAttributeSet itself is a generic attribute, it may also be contained in a generic

attribute set facilitating a recursive nesting of arbitrary depth. This hierarchy within a

genericAttributeSet is realized by the foreign key PARENT_GENATTRIB_ID which refers to

the superordinate genericAttributeSet (aggregate) and contains NULL, if such does not exist.

The foreign key ROOT_GENATTRIB_ID refers directly to the top level (root) of a

genericAttributeSet tree. In order to select all generic attributes forming a genericAttributeSet

one only has to select those with the same ROOT_GENATTRIB_ID.

The next available ID for the table CITYOBJECT_GENERICATTRIB is provided by the

sequence CITYOBJECT_GENERICATT_SEQ.

3D Geodatabase for CityGML 2019 89

2.3.3.10 LandUse Model

The CityGML feature class LandUse and its attributes specified in the UML (cf. Figure 17)

diagram are directly mapped the LAND_USE table and its corresponding columns. The

relation to table SURFACE_GEOMETRY is established by the foreign keys

LODx_MULTI_SURFACE_ID, where 0 ≤ x ≤ 4.

Figure 45: LandUse database schema

2.3.3.11 Transportation Model

For the realisation of transportation objects two tables are provided: TRAFFIC_AREA and

TRANSPORTATION_COMPLEX.

TRAFFIC_AREA

Next to the common attribute triple class, function and usage traffic areas can store

information about their surfaceMaterial. In the UML model this attribute is specified as

gml:CodeType which makes an additional _CODESPACE column necessary. The

representation of geometry is handled by foreign keys LODx_MULTI_SURFACE_ID (with 2

≤ x ≤ 4). The aggregation relation between a transportation complex and the corresponding

traffic areas results from the foreign key TRANSPORTATION_COMPLEX_ID. The foreign

key OBJECTCLASS_ID indicates whether a tuple represents a TrafficArea (value 47) or an

AuxiliaryTrafficArea (value 48) feature. If a CityGML ADE is used that extends any of the

two classes TrafficArea or AuxiliaryTrafficArea, further values for OBJECTCLASS_ID may

90 3D Geodatabase for CityGML 2019

be added by the ADE manager. Their concrete numbers depend on the ADE registration (cf.

section 6.3.3.1).

TRANSPORTATION_COMPLEX

As shown in the UML diagram, every traffic area object may have the attributes class,

function and usage. For differentiation between the subclasses an OBJECTCLASS_ID

column is used again:

 42 (TransportationComplex)

 43 (Track)

 44 (Railway)

 45 (Road)

 46 (Square)

If a CityGML ADE is used that extends any of the classes named above, further values for

OBJECTCLASS_ID may be added by the ADE manager. Their concrete numbers depend on

the ADE registration (cf. section 6.3.3.1).

In the coarsest level transportation complexes are modelled by line objects. The

corresponding column is called LOD0_NETWORK of geometry type MultiCurve in Oracle and

MultiLineString Z in PostGIS. Starting form LOD1 the representation of object geometry is

handled by foreign keys LODx_MULTI_SURFACE_ID (with 1 ≤ x ≤ 4).

Figure 46: Transportation database schema

3D Geodatabase for CityGML 2016 91

2.3.3.12 Tunnel Model

Figure 47: Tunnel database schema

92 3D Geodatabase for CityGML 2019

The tunnel model, described in paragraph 2.2.4.9 at the conceptual level, is realised by the

tables shown in Figure 47. The relational schema is identical to the building and bridge

schema for the most parts except for the naming. Please, refer to the explanation of the

building schema on the previous pages for a complete understanding. The main differences to

the building schema are the following:

 Tunnels cannot be modelled in LoD 0. Therefore, no corresponding columns appear in

the TUNNEL table.

 The CityGML feature HollowSpace can be seen analogue to the feature Room of a

building or a bridge

 CityGML features of tunnels, such as boundary surfaces, installations, openings,

hollow spaces and furniture, are mapped to separate specific tables and are not stored

in already existent ones (e.g. THEMATIC_SURFACE, OPENING). The reason for this

is to provide a schema that is as close to the UML model as possible. There are slight

differences between the building and the tunnel model that would lead to ambiguous

references e.g. a boundary surface of the building namespace cannot reference to a

tunnel feature.

 OBJECTCLASS_ID of table TUNNEL_THEMATIC_SURFACE allows the values:

o 89 (TunnelCeilingSurface),

o 90 (InteriorTunnelWallSurface)

o 91 (TunnelFloorSurface),

o 92 (TunnelRoofSurface),

o 93 (TunnelWallSurface),

o 94 (TunnelGroundSurface),

o 95 (TunnelClosureSurface),

o 96 (OuterTunnelCeilingSurface),

o 97 (OuterTunnelFloorSurface).

 In the TUNNEL_INSTALLATION table external tunnel installations can be

identified by the OBJECTCLASS_ID 86 and internal ones by 87.

 The OBJECTCLASS_ID column in table BRIDGE_OPENING can be of integer value

100 (BridgeDoor) or 99 (BridgeWindow). They are associated to entries in the table

TUNNEL_THEMATIC_SURFACE via the TUNNEL_OPEN_TO_THEM_SRF link

table.

 If a CityGML ADE is used that extends any of the named classes above, further values

for OBJECTCLASS_ID may be added by the ADE manager. Their concrete numbers

depend on the ADE registration (cf. section 6.3.3.1).

 In contrast to the building model tunnels and tunnel openings do not have addresses.

3D Geodatabase for CityGML 2019 93

2.3.3.13 Vegetation Model

The vegetation model specified in paragraph 2.2.4.10 is realized by the tables shown in Figure

48 which correspond largely to the UML model.

Figure 48: Vegetation database schema

SOLITARY_VEGETAT_OBJECT

The attributes class, function, usage, species, height, trunkDiameter, and crownDiameter

describe single vegetation objects. The attribute species is of type gml:CodeList in CityGML

that can be referenced to a certain codespace. Therefore, another _CODESPACE column is

provided in the SOLITARY_VEGETAT_OBJECT table. Similar to the building table attribute

with measure information can optionally be coupled with a reference to the used measuring

scale by an additional _UNIT column.

94 3D Geodatabase for CityGML 2019

The geometry of the vegetation can either be described explicitly using the attribute

LOD4_OTHER_GEOM or LOD4_BREP_ID or implicitly using a foreign key relation the

IMPLICIT_GEOMETRY table including a reference point and optionally a transformation

matrix (LODx_IMPLICIT_REP_ID, LODx_IMPLICIT_REF_POINT

LODx_IMPLICIT_TRANSFORMATION, with 1 ≤ x ≤ 4).

PLANT_COVER

Information on vegetation areas are contained in attributes usage, class, function, and

averageHeight. There is also a _UNIT column to specify the scale the averageHeight values

are based on. The geometry is restricted to a MultiSurface or (and this is unique for

PlantCover features) a MultiSolid, represented respectively by the foreign keys

LODx_MULTI_SURFACE_ID (with 1 ≤x ≤ 4) and LODx_MULTI_SOLID_ID which refer

to the SURFACE_GEOMETRY table.

2.3.3.14 WaterBody Model

WATERBODY, WATERBOD_TO_WATERBND_SRF

The modelling of the WATERBODY database schema corresponds largely to the respective

UML model. For LoD0 and LoD1 additional attributes are added, e.g. for modelling river

geometry (LODx_MULTI_CURVE).

The geometries of LOD0 and LOD1 areal water bodies are stored within the table

SURFACE_GEOMETRY. The foreign keys LODx_MULTI_SURFACE_ID (with 0 ≤ x ≤ 1)

refer to the corresponding rows. Geometry for water filled volumes is handled in a similar

way using foreign keys LODx_SOLID_ID (with 1 ≤ x ≤ 4).

For mapping the boundedBy aggregation which identifies the water body’s exterior shell

managed by the WATERBOUNDARY_SURFACE table, the additional table

WATERBOD_TO_WATERBND_SRF is needed to realise the m:n relationship.

WATERBOUNDARY_SURFACE

The exterior shell of a WaterBody can be differentiated semantically using features of the type

_WaterBoundarySurface. These features are stored in the WATERBOUNDARY_SURFACE

table and can be distinguished by the OBJECTCLASS_ID attribute:

 11 (WaterSurface)

 12 (WaterGroundSurface)

 13 (WaterClosureSurface)

If a CityGML ADE is used that extends any of the named classes above, further values for

OBJECTCLASS_ID may be added by the ADE manager. Their concrete numbers depend on

the ADE registration (cf. section 6.3.3.1).

3D Geodatabase for CityGML 2019 95

 Since every _WaterBoundarySurface object must have at least one associated surface

geometry, the foreign keys LODx_SURFACE_ID (with 2 ≤x ≤ 4, no MultiSurface here) are

used to realise these relations.

Figure 49: WaterBody database schema

 Sequences

Figure 50 lists predefined sequences from which multiple users may generate unique integers

for primary keys automatically. Sequences help to coordinate primary keys across multiple

rows and tables. For instance, the ID values of the BUILDING table are generated from the

CITYOBJECT_SEQ sequence. The sequences are defined to start with 1 and to be

incremented by 1 when a sequence number is generated. It is highly recommended to generate

ID values for all tables by using the predefined sequences only.

The sequence GRID_COVERAGE_RDT_SEQ does not exist in the PostgreSQL version as the

corresponding table does not exist.

96 3D Geodatabase for CityGML 2019

Figure 50: Overview of all sequences used in 3DCityDB

 Definition of the CRS for a 3D City Database instance

The definition of the CRS of a 3D City Database instance consists of two components: 1) a

valid Spatial Reference Identifier (SRID, typically the EPSG code) and 2) an OGC GML

conformant definition identifier for the CRS. Both components are defined during the database

setup (see chapter 3.3) and are further stored in the table DATABASE_SRS (see Figure 28).

The SRID is an integer value key pointing to spatial reference information within Oracle’s

MDSYS.CS_SRS table or PostGIS’ SPATIAL_REF_SYS table. Both DBMSs are shipped

with a large number of predefined spatial reference systems. At setup time, the SRID chosen

as default value for the 3D City Database instance must already exist in the mentioned

tables.

The GML conformant CRS definition identifier is used as value for the gml:srsName

attribute on GML geometry elements when exporting database contents to CityGML instance

documents. It should follow the OGC recommendation for the Universal Resource Name

(URN) encoding of CRSs given in the OGC Best Practice Paper Definition identifier

3D Geodatabase for CityGML 2019 97

URNs in OGC namespace [Whiteside 2009]. At setup time, please make sure to provide a

URN value which corresponds to the spatial reference system identified by the default SRID

of the database instance. Since CityGML is a 3D standard, the URN encoding shall always

represent a three-dimensional CRS which, for example, can be denoted as compound

coordinate reference systems [Whiteside 2009]. The general syntax of a URN encoding for a

compound reference system is as follows:

urn:ogc:def:crs,crs:authority:version:code,crs:authority:

version:code

Authority, version, and code depend on the information authority providing the CRS

definition (e.g. EPSG or OGC). The following example shows a possible combination of an

SRID (here referring to a 2D CRS) and CRS URN encoding (3D) to set up an instance of the

3D City Database:

SRID: 31466

URN: urn:ogc:def:crs,crs:EPSG:7.7:31466,crs:EPSG:7.7:5783

The example SRID is referencing a Projected CRS defined by EPSG (DHDN / 3-degree

Gauss-Krüger zone 2; used in the western part of Germany; EPSG-Code: 31466). The URN

encodes a compound coordinate reference system which adds a Vertical CRS as height

reference (DHHN92 height, EPSG-Code: 5783).

98 3D Geodatabase for CityGML 2019

3D Geodatabase for CityGML 2019 99

3 Implementation and Installation

The 3D City Database comes with SQL scripts for setting up an instance of the relational

schema on a spatial database system (Oracle Spatial/Locator or PostgreSQL/PostGIS) and

with a database loading and extracting tool called Importer/Exporter. Installers are available

for download at http://www.3dcitydb.org. The source code of the 3D City Database project is

hosted on https://github.com/3dcitydb. Please follow the instructions on the next pages to

complete a proper installation.

The individual components of the 3D City Database are also available as images for the

Docker virtualization technology. This makes it possible to install and configure a 3D City

Database with a single command line statement in almost any runtime environment. See

chapter 9 for more details.

3.1 System requirements

 3D City Database

Setting up an instance of the 3D City Database requires a running installation of an Oracle or

PostgreSQL database server.

Oracle

Supported version are Oracle 10g R2 or higher. The 3D City Database requires spatial data

support provided either through the Oracle Spatial or Locator extension. It is highly

recommended to install available patches to avoid unexpected errors and to benefit from the

latest functionality. For Oracle 10g R2, at least patch set 10.2.0.4.0 is required for using the

KML/COLLADA/glTF export capabilities.

PostgreSQL

Supported versions are PostgreSQL 9.3 or higher with the PostGIS extension 2.0 or

higher. Please also make sure to always install the latest patches and updates.

The SQL scripts to create the database schema are written to be executed by the default

command-line-based client interface of the DBMS – which is SQL*Plus for Oracle and psql

for PostgreSQL. The scripts include meta commands specific to these clients and would not

work properly when using a different client software. So please make sure SQL*Plus or psql

is installed on the machine from where you want to setup the 3D City Database.

 Importer/Exporter Tool

The Importer/Exporter tool can run on any platform providing support for Java 8 (or higher).

It has been successfully tested on (but is not limited to) the following operating systems:

 Microsoft Windows XP, Vista, 7, 8, 10;

 Apple Mac OS X and macOS;

 Ubuntu Linux 9 to 18.

http://www.3dcitydb.org/
https://github.com/3dcitydb

100 3D Geodatabase for CityGML 2019

Prior to the setup of the Importer/Exporter tool, the Java 8 Runtime Environment (or

higher) must be installed on your system. The installation package can be obtained from

http://www.java.com/en/download. Follow the installation instructions for your operating

system.

The Importer/Exporter is shipped with a universal installer that will guide you through the

steps of the setup process. A full installation of the Importer/Exporter including

documentation and example CityGML files requires approx. 505 MB of hard disk space.

Installing only the mandatory application files will use approx. 350 MB of hard disk space.

Installation packages can be selected during the setup process.

The Importer/Exporter runs with 1 GB of main memory per default. This setting should be

reasonable on most platforms and for most import/export procedures. If required, you can

manually adapt the main memory limits in the starter script of the program. Please refer to

chapter 5.1 for more details.

3.2 Installation of the Importer/Exporter and the 3D City

Database SQL Scripts

Download the universal installer from the 3DCityDB website at http://www.3dcitydb.org or at

https://github.com/3dcitydb/importer-exporter/releases and save it to your local file system.

The installer is shipped as an executable Java Archive (JAR) file. To run the installation

wizard, simply double-click on the 3DCityDB-Importer-Exporter-4.1.0-Setup.jar file.

Figure 51: Installation wizard of Import/Export tool (Step 5).

After accepting the license agreement and specifying an installation directory, you can choose

the software packages to be installed. It is recommended to at least select the packages ‘3D

City Database’ and ‘Documentation’. The ‘3D City Database’ package contains all SQL

scripts that are required for setting up an instance of the 3D City Database on your spatial

http://www.java.com/en/download
http://www.3dcitydb.org/
https://github.com/3dcitydb/importer-exporter/releases

3D Geodatabase for CityGML 2019 101

database system. Please refer to chapter 3.3 for a step-by-step guide on how to use the SQL

scripts. The package ‘Sample CityGML and KML/COLLADA datasets’ contains license-free

sample data that may be used in first tests.

The option ‘Plugins’ allows a user to install plugins for the Importer/Exporter, which add

further functionality to the tool. This release is shipped with the ‘Spreadsheet Generator

Plugin’ and the ‘ADE Manager Plugin’. A documentation of both plugins is provided in

chapters 6.2 and 6.3. More plugins may be added in future releases.

The ‘3D Web Map Client’ is a web-based viewer for 3DCityDB content and provides high-

performance 3D visualization and interactive exploration of arbitrarily large semantic 3D city

models on top of the open source Cesium Virtual Globe (refer to chapter 8 for the complete

documentation).

After successful installation, the contents of all selected installation packages are available in

the installation directory. To run the Importer/Exporter, simply use the starter script in the bin

subfolder (refer to chapter 5.1 for more information).

Note: Before the Importer/Exporter can connect to an Oracle/PostgreSQL database, the 3D

City Database schema must have been set up. Please follow the instructions

provided in the next chapter.

The installation directory contains the following subfolders:

Folder Optional Explanation

3dcitydb
x Contains all SQL scripts and stored procedures for operating the

3DCityDB

3d-web-map-client
x Contains a ZIP archive containing all files required to install the 3D Web

Map Client on a web server

ade-extensions
 Contains extension packages to support CityGML ADEs. ADE extensions

only must be copied to this directory to make them available in the
program.

bin
 Platform-specific starter scripts to launch the Importer/Exporter. For

instance, under Windows, double-click on 3DCityDB-Importer-
Exporter.bat to run the program

contribs
 Third-party tools required by the Importer/Exporter (e.g. collada2gltf

converter binaries)

lib Contains all libraries required by the Importer/Exporter

licence Contains the license documents for Importer/Exporter

manual x Contains the documentation for the 3DCityDB and the tools

plugins
 Contains plugins of the Importer/Exporter. Plugins only have to be copied

to this directory to make them available in the program.

samples x Contains CityGML and KML/COLLADA test datasets

templates

 Contains HTML templates for information balloons for KML/COLLADA
exports, a selection of coordinate reference systems in the form of XML
documents, and example XSLT stylesheets to be used in imports and
exports.

uninstaller Contains a JAR executable that uninstalls the Importer/Exporter

README.txt A brief information about the application

Table 18: Contents of the installation directory.

102 3D Geodatabase for CityGML 2019

3.3 Setting up the database schema

The required scripts for setting up the 3D City Database are in the installation directory of the

Importer/Exporter within the 3dcitydb/oracle/ or 3dcitydb/postgresql/ subfolders.

 Shell Scripts

In previous versions of the 3D City Database the setup was managed through user prompts in

SQL scripts. To facilitate continuous integration workflows these inputs have been moved to

batch (Windows) and shell scripts (UNIX/Linux/macOS). The following table provides an

overview of the different shell scripts:

File Oracle PgSQL Explanation

CONNECTION_DETAILS x x Sets database credentials

CREATE_DB x x Runs all scripts for creating the relational schema of the

3DCityDB incl. user-defined types and functions

CREATE_SCHEMA x Creates an additional 3DCityDB instance in a separate

schema within the same database

DROP_DB x x Deletes all elements of the 3DCityDB

MIGRATION/

DROP_DB_V2

 x Deletes all deprecated elements of a 3DCityDB v2 after a

successful migration towards v4

DROP_SCHEMA x Removes a given database schema that contains a

3DCityDB instance

MIGRATION/

GRANT_ACCESS_V2

x Grants access on a 3DCityDB v2 to a v4 user (only

relevant for migration)

GRANT_ACCESS x x Grants read-only of read-write access on the 3DCityDB for

a given user

MIGRATION/

MIGRATE_DB

x x Starts the migration process from an older version

REVOKE_ACCESS x x Revokes access rights for a given user

Table 19: Overview of all shell scripts within 3dcitydb/oracle or 3dcitydb/postgresql folder.

The batch/shell scripts can be executed on double click. On some UNIX/Linux distributions

though, you will have to run the .sh scripts from within a shell environment. Please open your

favorite shell and check whether execution permission is set for the starter script. Change to

the installation folder and enter the following to make the starter script executable for the

owner of the file, e.g.:

chmod u+x CREATE_DB.sh

Afterwards, simply run the shell script by typing:

./CREATE_DB.sh

Note: The database connection details need to be set in the CONNECTION_DETAILS

script prior to executing the batch/shell scripts.

3D Geodatabase for CityGML 2019 103

 SQL Scripts

The SQLScripts directory contains four subfolders:

SCHEMA

Includes SQL files about the logical (tables, constraints) and physical (datatypes, indexes)

database schema of the 3D City Database exported from the schema modelling tools

JDeveloper (Oracle) or pgModeler (PostgreSQL) (with minor changes). INSERT statements

for the prefilled lookup tables OBJECTCLASS and AGGREGATION_INFO as well as

converter functions between table names and objectclass IDs can be found in the

OBJECTCLASS subfolder. Because of PostgreSQL’s way to handle database schemas the

SCHEMA folder contains a few more scripts with stored procedures. See next chapter for

more details.

CITYDB_PKG

Contains scripts that create database objects and stored procedures mainly to be used by the

Importer/Exporter application. They are written in PL/SQL (Oracle) or PL/pgSQL

(PostgreSQL) and grouped by the type of operation (data manipulation, maintenance etc.).

The APIs are introduced in chapter 4.

UTIL

This folder assembles different database management utilities:

 Grant and revoke read rights to and from the 3D City Database.

 Create additional database schemas with a 3D City Database layout (PostgreSQL-

only)

 Enable or disable versioning (execution can be time-consuming) (Oracle-only)

 Update table statistics for spatial columns (PostgreSQL-only)

MIGRATION

Provides a migration path from previous releases to the newest version. See chapter 3.4 for

more details. This folder will also include upgrade scripts for upcoming minor releases.

 Installation steps on Oracle Databases

Step 1 - Define a user for the 3D City Database

A dedicated database user should be created for your work with the 3D City Database. This

user must have the roles CONNECT and RESOURCE assigned and must own the privileges

CREATE SEQUENCE and CREATE TABLE.

Note: The privileges CREATE SEQUENCE and CREATE TABLE are required for

enabling and disabling spatial indexes. It is not sufficient to inherit these privileges

through a role.

104 3D Geodatabase for CityGML 2019

Step 2 – Edit the CONNECTION_DETAILS[.sh | .bat] script

Go to the 3dcitydb/oracle/ShellScrpts directory, choose the folder corresponding to your

operating system and open the file named CONNECTION_DETAILS within a text editor.

There are five variables that will be used to connect to the DBMS. If SQL*Plus is already

registered in your system path, you do not have to set the directory for the SQLPLUSBIN

variable. The other parameters should be obvious to Oracle users. Here is an example how the

complete CONNECTION_DETAILS can look like:

SQLPLUSBIN= C:\Oracle\instantclient_11_2

HOST=localhost

PORT=1521

SID=orcl

USERNAME=citydb_v4

Note, that the scripts to grant or revoke read access require SYSDBA privileges. You can

specify a SYSDBA user in the CONNECTION_DETAILS script under an additional

parameter called SYSDBA_USERNAME.

Step 3 - Execute the CREATE_DB script:

As soon as the database credentials are defined run the CREATE_DB script – located in the

same folder as CONNECTION_DETAILS (see also chapter 3.3.1).

Step 4 - Define the coordinate reference system

When executing the CREATE_DB script, the user is prompted for the coordinate reference

system (CRS) to be used in the 3D City Database. You have to enter the Oracle-specific SRID

(spatial reference ID) of the CRS which – in most cases – resembles the EPSG code of the

CRS. There are three prompts in total to define the spatial reference:

 First, specify the SRID to be used for the geometry columns of the database. Unlike

previous version of the 3D City Database there is no default CRS defined.

 Second, specify the SRID of the height system if no true 3D CRS is used for the data.

This can be regarded as metadata and has no effect on the geometry columns in the

database. The default value is 0 – which means “not set”.

 Third, provide the GML-conformant uniform resource name (URN) encoding of the

CRS. The default value uses the OGC namespace and comprises of the first two user

inputs: urn:ogc:def:crs,crs:EPSG::<crs1>[,crs:EPSG::<crs2>].

More information about the SRID and the URN encoding can be found in chapter 2.3.5.

Step 5 – Enable or disable versioning

After providing the CRS information, the user is asked whether or not the database should be

versioned-enabled. Versioning is realized based on Oracle’s Workspace Manager

functionality (see the Oracle documentation for more information). Please enter ‘yes’ or ‘no’.

The default value ‘no’ is confirmed by simply pressing Enter. Note that, in general, insert,

update, delete and index operations on version-enabled tables take considerably more time

than on tables without versioning support.

3D Geodatabase for CityGML 2019 105

Step 6 – Choose Spatial or Locator license option

You can set up a 3D City Database instance on an Oracle database with Spatial or Locator

support. Since Locator differs from Spatial with respect to the available spatial data types,

you need to specify which license option is valid for your Oracle installation. Simply enter ‘L’

for Locator or ‘S’ for Spatial (default value) to make your choice.

Note: Since Locator lacks the GeoRaster data type, the 3D City Database tables for storing

raster reliefs (RASTER_RELIEF, GRID_COVERAGE, GRID_COVERAGE_RDT) are

not created when choosing Locator.

Note: Several spatial operations and functionalities that are available in Oracle Spatial are

not covered by the Locator license even though they might be available from your

Oracle installation. It is the responsibility of the database user to observe the

Oracle license option. Choosing Locator or Spatial when setting up the 3D City

Database does neither affect the license option nor the users’ responsibility.

The following figure exemplifies the required user input during steps 4 to 6.

Figure 52: Example user input when executing CREATE_DB on an Oracle database.

106 3D Geodatabase for CityGML 2019

Step 7 – Check if the setup is correct

After successful completion of the setup procedure, the tables, sequences and packages (that

contain stored procedures) should appear in the user schema.

Versioning of the database can also be switched on and off at any time. The corresponding

scripts are ENABLE_VERSIONING.sql and DISABLE_VERSIONING.sql. These scripts

invoke routines of the Oracle Workspace Manager and will take some time for execution

depending on the amount of data stored in the 3D City Database instance.

Last but not least, the schema and stored procedures of the 3D City Database can be dropped

with the DROP_DB script, which is executed like CREATE_DB. Similar to CREATE_DB,

you need to provide the license option (Locator or Spatial). Note that the script will delete all

data stored in the 3D City Database schema. The database user will, however, not be deleted.

 Installation steps on PostgreSQL

Step 1 - Create an empty PostgreSQL database

Choose a superuser or a user with the CREATEDB privilege to create a new database on the

PostgreSQL server (e.g. 'citydb_v4'). As owner of this new database, choose or create a user

who will later set up the 3D City Database instance. Otherwise, more permissions have to be

granted. In the following steps, this user is called 'citydb_user'.

Connect to the database and type:

CREATE DATABASE citydb_v4 OWNER citydb_user;

or use a graphical database client such as pgAdmin that is shipped with PostgreSQL. Please

check the pgAdmin documentation for more details.

Step 2 – Add the PostGIS extension

The 3D City Database requires the PostGIS extension to be added to the database. This can

only be done as superuser. The extension is added with the following command (or,

alternatively, using pgAdmin):

CREATE EXTENSION postgis;

Some 3D operations such as extrusion or volume calculation are only available through the

PostGIS SFCGAL extension. The installed PostGIS add-on should at least be on version

2.2 to execute the DDL command:

CREATE EXTENSION postgis_sfcgal;

Step 3 – Edit the CONNECTION_DETAILS[.sh | .bat] script

Go to the 3dcitydb/postgresql/ShellScrpts directory, choose the folder corresponding to your

operating system and open the file named CONNECTION_DETAILS within a text editor.

There are five variables that will be used to connect to the DBMS. If psql is already registered

in your system path, you do not have to set the directory for the PGBIN variable. The other

3D Geodatabase for CityGML 2019 107

parameters should be obvious to PostgreSQL users. Here is an example how the complete

CONNECTION_DETAILS can look like:

PGBIN= C:\PostgreSQL\9.6\bin

PGHOST=localhost

PGPORT=5432

CITYDB=citydb_v4

PGUSER=citydb_user

Step 4 - Execute the CREATE_DB script

As soon as the database credentials are defined run the CREATE_DB script – located in the

same folder as CONNECTION_DETAILS (see also chapter 3.3.1).

Step 5 – Specify the coordinate reference system

Like with the Oracle version, the user is prompted to enter the SRID used for the geometry

columns, the SRID of the height system and the URN encoding of the coordinate reference

system to be used (see chapter 2.3.5. for more information).

Note: The setup process will terminate immediately if an error occurs. Reasons might be:

 The user executing CREATE_DB.sql is neither a superuser nor the owner of the

specified database (or does not own privileges to create objects in that database);

 The PostGIS extension has not been installed; or

 Parts of the 3D City Database do already exist because of a previous setup

attempt. Therefore, make sure that the schemas ‘citydb’ and ‘citydb_pkg’ do not

exist in the database when setting up the 3D City Database.

After a series of log messages reporting the creation of database objects, the chosen reference

system is applied to the spatial columns (expect for those that will store data with local

coordinate systems). This takes some seconds and is finished when the word ‘Done’ is

displayed.

Step 5 – Check if the setup is correct

The 3D City Database is stored in a separate PostgreSQL schema called ‘citydb’. The stored

procedures are written to a separate PostgreSQL schema called ‘citydb_pkg’. Usually

different schemas have to be addressed in every query via dot notation, e.g.

SELECT * FROM citydb.building;

Fortunately, this can be avoided when the corresponding schemas are on the database search

path. The search path is automatically adapted during the setup. Execute the command

SHOW search_path;

to check if the schemas citydb, citydb_pkg and public (for PostGIS elements) are contained.

108 3D Geodatabase for CityGML 2019

Note: When using the created 3D City Database as a template database for new databases,

the search path information is not transferred and thus has to be set again, e.g.:

ALTER DATABASE new_citydb_v4 SET search_path TO citydb,

citydb_pkg, public;

The search path will be updated upon the next login, not within the same session.

To drop the 3D City Database with all data, execute the DROP_DB.sql script in the same way

like CREATE_DB.sql. Simply dropping the schemas ‘citydb’ and ‘citydb_pkg’ in a cascading

way will also do the job.

3.4 Working with multiple database schemas

Most users rarely work with only one 3D City Database. They maintain multiple instances for

each data set, for different city projects or user groups and probably for various test demos.

The new ability to manage CityGML ADEs sets the ground for even more experiments. This

chapter explains how to manage multiple 3D City Databases in separate schemas.

 Create and address database schemas

Databases and schemas in PostgreSQL

PostgreSQL provides a clustering concept for database schemas that allows users to group

multiple instances of the 3D City Database. This means within one database object a user can

create more schemas like in the ‘citydb’ schema, that store the table layout of the 3D City

Database. They can be regarded as separate namespaces. To address the different namespaces,

dot notation should be used in queries. Note, if tables are not schema-qualified the first

namespace in the database search path (see chapter 3.3.4) that contains the tables will be used.

One advantage of using multiple schemas instead of many databases is the ability to join

tables from different namespaces. Cross-database queries are not directly possible in

PostgreSQL (see postgres_fdw extension).

To create an additional 3D City Database instance within a given database run the

CREATE_SCHEMA shell script and define a name for the new schema. The new instance

will obtain the CRS from the ‘citydb’ schema, which can be changed later (see chapter 4.5).

To drop a schema, call the DROP_SCHEMA shell script.

Oracle user schemas

In Oracle, schemas are bound to one user. All user schemas belong to one database. There is

no clustering concept like in PostgreSQL, so a CREATE_SCHEMA script would not make

too much sense. In fact, a new instance should be created with a new user and the

CREATE_DB script. Like with PostgreSQL schemas, it is possible to join tables from

different user namespaces if sufficient privileges were granted (see next chapter). As another

alternative Oracle databases can be set under version control with the Oracle Workspace

Manager so that a user can also work with multiple versions of a city model in separate

workspaces. To change the workspace a user must execute the DBMS_WM.GotoWorkspace

procedure.

3D Geodatabase for CityGML 2019 109

 Read and write access to a schema

A shell script called GRANT_ACCESS is provided to grant either READ-ONLY (RO) or

READ-WRITE (RW) access rights to a 3D City Database instance. The user who acts as the

grantor must be specified in the CONNECTION_DETAILS file. The user name of the grantee

must be entered when executing the script.

Read-only access rights

Granting only read access is useful if you want to protect your data from unauthorized or

accidental modification. This is the default setting in the GRANT_ACCESS script. Read-only

users will be allowed to:

 connect to the given database schema and use its objects (tables, views, sequences,

types etc.),

 export data in both CityGML and KML/COLLADA formats,

 generate database reports, query the index status and calculate envelopes.

But they can neither import new data into the 3DCityDB nor alter the data already stored in

the tables in any way (incl. updating envelopes, dropping and creating indexes).

Read and write access rights

By choosing the RW option in the GRANT_ACCESS script the grantee will also be able to

perform UPDATE and DELETE operations against the schema content. This is especially

useful for Oracle users, who want to manage different database schemas with primarily one

user. In PostgreSQL however, one user can be the owner of multiple schemas. Still, write

access can be interesting in a multi-editor scenario.

Note: Dropping and creating indexes is not possible in PostgreSQL, if you’re not the owner

of the table.

Revoke access

Like with the GRANT_ACCESS script, access rights can also be revoked, of course. Simply

call the REVOKE_ACCESS script and enter the user name of the grantee and the schema

name from which the rights shall be revoked from.

 Schema support in stored procedures

Since v3.0.0, most stored procedures of the 3D City Database offer an input argument to

specify the schema name against which the operation will be executed. The default for Oracle

is the schema of the currently connected user, for PostgreSQL it is `citydb`. For v4.0 this

parameter has been removed for those type of stored procedures that operate on the logical

level of the database, because managing different ADEs in separate schemas can result in a

different table structure. E.g. one central delete script is not guaranteed to work against every

schema. Thus, for PostgreSQL these procedures are now part of an instance schema such as

‘citydb’ (see also chapter 4). Instead of calling a delete function from the central ‘citydb_pkg’

schema like this:

110 3D Geodatabase for CityGML 2019

SELECT citydb_pkg.delete_cityobject(1, ‘my_schema’);

you now have to schema-qualify the function itself:

SELECT my_schema.delete_cityobject(1);

In Oracle, every stored procedure could be called this way, as every user schema stores the

PL/SQL packages.

3.5 Migration from previous major releases

Scripts are located in the folder 3dcitydb/[oracle/postgresql]/MIGRATION within the

installation directory of the Importer/Exporter tool. A migration path is provided for 3D City

Databases of version 2.1 and of version 3.3.

Hint: Another safe and simple migration approach is to export the database content from

the v2.x/v3.x instance as CityGML with the previous version of the

Importer/Exporter and to re-import the data into the new 3D City Database version

by using the new Importer/Exporter shipped with this release. This approach might

take more time though, depending on the amount of data stored in the database.

Note: The migration scripts do not handle version-enabled tables under Oracle. Therefore,

if you are using Oracle and have enabled versioning, then exporting and re-importing

the data is the recommended way to migrate to the new 3DCityDB version.

To start the migration process run the MIGRATE_DB shell script. Make sure, the database

credentials taken from the CONNECTION_DETAILS file are correct. With the first input you

need to enter the major version number of the currently installed 3D City Database instance –

either 2 or 3. To identify the actual version of your 3D City Database you can use the

Importer/Exporter tool to connect to the 3D City Database instance that you want to upgrade.

Starting from v3.0.0 the version string is printed to the console window after the connection

has been successfully established as shown below (see chapter 5.2.1 for details).

Figure 53: Version information of a 3D City Database.

3D Geodatabase for CityGML 2019 111

If the version string does not show up, you are running a v2.x instance. Alternatively, the

version information can also be queried using database-side functions. For Oracle the

command is:

SQL> select MAJOR_VERSION from

table(CITYDB_UTIL.CITYDB_VERSION);

For PostgreSQL it is:

psql> SELECT major_version FROM citydb_pkg.citydb_version();

If the function is not known to the system, you are probably running a v2.x instance. For

Oracle Database, migrating from v2 to v4 has some prerequisites which will be explained in

detail in the next chapter.

 V2 to V4 Migration on Oracle

Step 1 – Upgrade an existing installation

The migration to v4.0 must be carried out on a version 2.1.0 instance of the 3D City

Database. Versions prior to version 2.1.0 must first be upgraded to 2.1.0 since the internal

storage of envelopes of city objects changed substantially. Corresponding upgrade scripts are

shipped with the v2.1.0 release. Upgrades to 2.1.0 can be carried out from any older version

2.0.0 to 2.0.6. A more detailed description of the upgrade procedure can be found in the

document “Documentation of the 3D City Database v2.1.0 and the Importer/Exporter v1.6.0”.

Before upgrading your 3D City Database, a database backup is highly recommended to secure

all data. The latter can be easily done using the Importer/Exporter tool or by tools provided by

Oracle.

Important: Please note that the last step in the upgrade process is a lengthy one. Altering the

internal storage of the envelopes of all city objects in a large and/or versioned database may

take hours. Depending on their initial state, spatial indexes may be disabled and re-enabled in

the process, adding to the duration as a whole. This process MUST NOT be interrupted since

it could lead to an inconsistent state. Please be patient and remember that backing up all of

your data before starting any database upgrade is the commonly recommended practice.

Step 2 – Creating a new installation

The migration script transfers data from a user schema with the v2.1.0 installation to another

user schema that has to contain the 3D City Database schema v4.0. Install the new version

like it is described in chapter 3.3 if not done so yet.

Step 3 – Grant select on v2.1.0 schema to v4.0 schema

The migration process requires that the user with the v4.0 schema can access the user schema

with the v2.1.0 version. Therefore, run the GRANT_ACCESS_V2 shell script (see chapter

3.3.1) as the V2 user. When executed the user is requested to type in the schema name for the

3D City Database v4.0 instance.

112 3D Geodatabase for CityGML 2019

Step 4 – Run MIGRATE_DB

Now, start the MIGRATE_DB script located in the same folder like GRANT_ACCESS_V2

as the V4 user. Choose the value 2 as first input and specify the name of the schema with the

v2.1.0 instance.

Step 5 – Be sure of using unique texture URIs

Starting from v3.0.0 of the 3D City Database, textures that are referenced to more than one

geometry are no longer stored redundantly in the SURFACE_DATA table but only once in the

TEX_IMAGE table. This optimization can also be done during the migration process, if it is

guaranteed that texture URIs are unique and not used for different texture files. Otherwise,

some textures would get lost during the migration and remaining images would be referenced

to wrong surfaces. Therefore, if you can assure the non-existence of duplicate texture URIs,

verify with ‘y’ or ‘yes’. In case you know that textures in the database are named equally (or

if you do not know) you can still run the script by entering ‘n’ or nothing (because it is the

default). Entries in the TEX_IMAGE column of the SURFACE_DATA table from version 2.1

are then further mapped 1:1 to the TEX_IMAGE table of version 4.0.

Note: A simple unification of texture URIs in advance of the migration will not help to

store the textures only once, because same textures with different URIs are regarded

as different image files and would all end up in the new TEX_IMAGE table. You

would have to compare the binary data itself.

Step 6 – Choose Spatial or Locator license option

With the last input parameter you specify the database license running on your Oracle server,

like you have done when setting up the v4.0 instance of the 3D City Database. Choose ‘S’ for

Spatial (which will additionally migrate raster data) and ‘L’ for Locator.

Step 7 – Check if the setup is correct

The script temporary disables databases indexes and foreign key constraints and creates an

additional package with migration procedures (CITYDB_MIGRATE). The package is

removed again when the migration progress is completed and the message "DB migration is

completed successfully." is displayed on the console. It is recommended to generate a

database report of the new user schema and compare it with a report of the schema that

contains the 2.1 instance of the 3D City Database (done with the previous version of the

Import/Export tool). Verify that

 no city objects are missing (do a database report),

 indexes and foreign keys got activated again,

 relations between features and attributes are correct, and

 exports look correct inside a viewer application.

Step 8 – Drop the deprecated v2.x schema

If the migration was successful, the v2.x user simply has to invoke the DROP_DB (of version

2.x) to drop the deprecated schema. Deleting the v2.x user works as well.

3D Geodatabase for CityGML 2019 113

 V2 to V4 Migration on PostgreSQL

Step 1 – Run MIGRATE_DB

For PostgreSQL, setting up a new v4.0 instance is not necessary. Simply execute the

MIGRATE_DB shell script and choose the value 2 as first input.

Step 2 – Be sure of using unique texture URIs

Like with the Oracle version, you are requested to guarantee that no texture URI is used for

different images. See Step 5 in the workflow explanation of the Oracle version for further

details.

Step 3 – Check if the setup is correct

After a series of log messages reporting the selection of data from the v2.x schema, updates of

references and the creation of database objects, the script is finished with the message

'3DCityDB migration complete!'. If the old database schema is not dropped during the

migration (see last step), both versions of the 3D City Database will remain in one database.

This is actually a good thing, because you can further compare if everything has been

transferred correctly.

Idempotent migration

If the migration process has been interrupted by the user or by severe software errors, the

migration script can simply be executed again (only if the old v2.x schema still exists) without

manually dropping already created parts of the v4.0 schema because the script does it for you.

Step 4 – Drop the deprecated v2.x schema

To remove the deprecated parts of your 3D City Database invoke the DROP_DB_V2 shell

script. DO NOT execute the DROP_DB script as the old and new instance of the 3D City

Database are both stored inside the same database (new = citydb schema, old = public

schema). DROP_DB drops all database schemas where it finds a DATABASE_SRS table, so

all you data would be lost. Be careful!

 V3 to V4 Migration

The migration process from v3 to v4 does not require any user inputs after entering the value

3 in the MIGRATE_DB script (except for choosing the license under Oracle). Please note,

that schema changes on existing tables are applied with ALTER TABLE statements which

can lock these tables for a longer period if they contain millions of rows.

3.6 Upgrade between minor releases

Every minor release of the 3D City Database is shipped with an upgrade script if necessary.

Starting from version 4.x.x it can be found in the MIGRATION folder. Like with other

database DDL tasks a shell script will be provided as well to ease the upgrade process. Make

sure to first check the current version of your 3D City Database installation before performing

114 3D Geodatabase for CityGML 2019

an upgrade, as mentioned in the migration chapter 3.5. During an upgrade check the output

messages of the script for errors and warnings. The process should finish the message “3D

City Database upgrade complete”.

3D Geodatabase for CityGML 2019 115

4 Stored procedures and additional features

The 3D City Database is shipped with a set of stored procedures referred to as the CITYDB

package (formerly known as the GEODB package in v2.x). They are automatically installed

during the setup procedure of the 3D City Database. For the Oracle version, it comprises of

eight PL/SQL packages. In the PostgreSQL version, functions are written in PL/pgSQL and

stored either in their own database schema called ‘citydb_pkg’ or as part of an instance

schema like ‘citydb’. Many of these functions and procedures expose certain tasks on the

database side to the Importer/Exporter client. When calling stored procedures, the package

name has to be included for the Oracle version. With PostgreSQL, the ‘citydb_pkg’ schema

has not to be specified as prefix since it is put on the database search path during setup.

Figure 54: Graphical database client connected to the 3D City Database (left: SQL Developer (Oracle), right:

pgAdmin 4 (PostgreSQL)

4.1 User-defined data types

The Oracle version defines a set of user-defined data types that are used by functions from the

PL/SQL packages. They are not necessary in PostgreSQL, because of how it deals with arrays

and returns of multiple variables.

 STRARRAY, a nested table of the data type VARCHAR2

 ID_ARRAY, a nested table of the data type NUMBER

 DB_VERSION_OBJ, an object that bundles version information of the installed 3D

City Database instance

 DB_VERSION_TABLE, a nested table of DB_VERSION_OBJ

 DB_INFO_OBJ, an object that bundles metadata of the used reference system

 DB_INFO_TABLE, a nested table of DB_INFO_OBJ

The definition of the data types can be found in the SQL file for the CITYDB_UTIL package.

116 3D Geodatabase for CityGML 2019

4.2 CITYDB_UTIL

The CITYDB_UTIL package can be seen as a container for various single utility functions. If

further releases will bring more stored procedures with similar functionality some of them

will probably be outsourced in their own package (like CITYDB_CONSTRAINT in v4.0).

Nearly all functions take the schema name as the last input argument (“schema-aware”).

Therefore, they can be executed against another user schema in Oracle or database schema in

PostgreSQL. Note, for the function get_seq_values the schema name must be part of the

first argument – the sequence name, e.g. 'my_schema.cityobject_seq'.

Here is overview on API of the CITYDB_UTIL package in Oracle:

Function Return Type Explanation

citydb_version DB_VERSION_TABLE Returns version information of the currently

installed 3DCityDB

construct_solid (geom_root_id) SDO_GEOMETRY Tries to construct a solid geometry based on a

given root_id value in SURFACE_GEOMETRY table

db_info (schema_name) 3 OUT variables Returns three columns: schema_srid INTEGER,

schema_gml_srs_name VARCHAR2, versioning

VARCHAR2

db_metadata (schema_name) DB_INFO_TABLE Returns a set of 3DCityDB metadata

drop_tmp_tables (schema_name) void Drop existing temporal tables

get_id_array_size (ID_ARRAY) NUMBER Returns the size of an ID_ARRAY nested table

get_seq_values (seq_name,

seq_count)

ID_ARRAY Returns the next k values of a given sequence

min (NUMBER, NUMBER) NUMBER Returns the smaller of two given numbers

sdo2geojson3d

(SDO_GEOMETRY,

decimal_places, compress_tags,

relative2mbr)

CLOB Returns a given geometry into a 3D GeoJSON

character object

split (VARCHAR2, delimiter) STRARRAY Splits a String based on a given delimiter into a

STRARRAY object

ST_Affine (SDO_GEOMETRY,

row1col1, row1col2, row1col3,

row2col1, row2col2, row2col3,

row3col1, row3col2, row3col3,

row1col4, row2col4, row3col4)

SDO_GEOMETRY Performs an affine transformation on a given

geometry a given 3x3 matrix plus 3 offset values

string2id_array (VARCHAR2,

delimiter)

ID_ARRAY Transforms a String into an ID_ARRAY with a

given delimiter

to_2d (SDO_GEOMETRY, srid) SDO_GEOMETRY Returns a geometry without Z values

versioning_db (schema_name) VARCHAR2 Returns either ‘ON’ or ‘OFF’

versioning_table (table_name,

schema_name)

VARCHAR2 Returns either ‘ON’ or ‘OFF’

Table 20: API of CITYDB_UTIL package for Oracle

The PostgreSQL API includes less functions, as some functionality is provided by the

PostGIS extension, such as ST_AsGeoJSON, ST_Affine and ST_Force2D. Returning

multiple variables is always performed with OUT variables.

Function Return Type Explanation

citydb_version () 4 OUT variables Returns version information of the currently

installed 3DCityDB

db_info (schema_name) 3 OUT variables Returns three columns: schema_srid INTEGER,

schema_gml_srs_name TEXT, versioning TEXT

3D Geodatabase for CityGML 2019 117

db_metadata (schema_name) 6 OUT variables Returns six variables: schema_srid INTEGER,

schema_gml_srs_name TEXT,

coord_ref_sys_name TEXT, coord_ref_sys_kind

TEXT, wktext TEXT, versioning TEXT

drop_tmp_tables (schema_name) void Drop existing temporal tables

get_seq_values (seq_name,

seq_count)

SETOF INTEGER Returns the next k values of a given sequence

Min (NUMERIC, NUMERIC) NUMERIC Returns the smaller of two given numbers

versioning_db (schema_name) TEXT Returns ‘OFF’

versioning_table (table_name,

schema_name)

TEXT Returns ‘OFF’

Table 21: API of CITYDB_UTIL package for PostgreSQL

4.3 CITYDB_CONSTRAINT

The CITYDB_CONSTRAINT packages includes stored procedures to define constraints or

change their behavior. A user can temporarily disable certain foreign key relationships

between tables, e.g. the numerous references to the SURFACE_GEOMETRY table. The

constraints are not dropped. While it comes at the risk of data inconsistency it can improve the

performance for bulk write operations such as huge imports or the deletion of thousands of

city objects.

It is also possible to change the delete rule of foreign keys from ON DELETE NO ACTION

(use 'a' as input) to ON DELETE SET NULL ('n') or ON DELETE CASCADE ('c').

Switching the delete rule will remove and recreate the foreign key constraint. The delete rule

does affect the layout of automatically generated delete scripts as no explicit code is necessary

in case of cascading deletes. However, we do not recommend to change the behavior of

existing foreign key relationships because some delete operations might not work properly

anymore. For Oracle databases, there is an additional procedure to define spatial metadata for

single geometry column. All functions are schema-aware and their return type is void.

Function Explanation

set_column_sdo_metadata

(geom_column_name, dimension, srid,

table_name, schema_name)

Inserts a new entry in the USER_SDO_GEOM_METADATA view

for a given geometry column

set_enabled_fkey (fkey_name, table_name,

BOOLEAN, schema_name)

Disables / enables a given foreign key constraint

set_enabled_geom_fkeys (BOOLEAN,

schema_name)

Disables / enables all foreign key constraints that reference

the SURFACE_GEOMETRY table

set_enabled_schema_fkeys (BOOLEAN,

schema_name)

Disables / enables all foreign key constraints within a given

user schema

set_fkey_delete_rule (fkey_name, table_name,

column_name, ref_table, ref_column,

on_delete_param, schema_name)

Changes the delete rule of a given foreign key constraint

set_schema_fkey_delete_rule

(on_delete_param, schema_name)

Changes the delete rule of all foreign key constraint within a

given user schema

set_schema_sdo_metadata (schema_name) Inserts new entries in the USER_SDO_GEOM_METADATA view

for all geometry columns of a given schema (some

expections)

Table 22: API of CITYDB_CONSTRAINT package for Oracle

118 3D Geodatabase for CityGML 2019

There is only one significant difference in the API in PostgreSQL. Instead of specifying the

name, table and schema of a foreign key, the OID of the corresponding integrity trigger is

enough. This is because there is no ALTER TABLE command in PostgreSQL to disable

foreign keys.

Function Explanation

set_enabled_fkey (fkey_trigger_oid, BOOLEAN) Disables / enables a given foreign key constraint trigger

Table 23: Notable difference in the API of CITYDB_CONSTRAINT package for PostgreSQL

4.4 CITYDB_IDX

The package CITYDB_IDX provides functions to create, drop, and check both spatial and

non-spatial indexes on tables of the 3D City Database by using a user-defined data type called

INDEX_OBJ. In the Oracle version, the data type offers three member functions to construct

an INDEX_OBJ. In the PostgreSQL version, these are just separate functions within the

‘citydb_pkg’ schema:

 construct_spatial_3d for a 3-dimensional spatial index

 construct_spatial_2d for a 2-dimensional spatial index

 construct_normal for a normal B-tree index

The easiest way to take use of this package is by using the Importer/Exporter (see chapter

5.2.2), which provides an interface for enabling and disabling indexes (ON and OFF).

Disabling spatial indexes can accelerate some operations such as bulk imports, deletion of

many objects, and migration of data from a 3D City Database v2.1.0 instance to version 4.0.

The methods used by the Importer/Exporter iterate over the entries in the INDEX_TABLE

table which is part of the database schema. In order to include more indexes the user need to

insert their metadata into INDEX_TABLE. The differences between Oracle and PostgreSQL

only apply to different data types. Instead of STRARRAY an array of TEXT is used as return

type.

Function Return Type Explanation

create_index(INDEX_OBJ,

is_versioned, schema_name)

VARCHAR2 Creates a new index based on the metadata of the input

INDEX_OBJ. Returns a text status.

create_normal_indexes

(schema_name)

STRARRAY Creates indexes for all normal indexes to be found in

INDEX_TABLE. Returns an array of status reports.

create_spatial_indexes

(schema_name)

STRARRAY Creates indexes for all spatial indexes to be found in

INDEX_TABLE. Returns an array of status reports.

drop_index (INDEX_OBJ,

is_versioned, schema_name)

VARCHAR2 Drops an index that matches the metadata of the input

INDEX_OBJ. Returns a text status.

drop_normal_indexes

(schema_name)

STRARRAY Drops indexes that match all normal indexes to be found in

INDEX_TABLE. Returns an array of status reports.

drop_spatial_indexes

(schema_name)

STRARRAY Drops indexes that match all spatial indexes to be found in

INDEX_TABLE. Returns an array of status reports.

get_index(table_name,

column_name,

schema_name)

INDEX_OBJ Returns an INDEX_OBJ from INDEX_TABLE based on the

inputs

index_status(INDEX_OBJ,

schema_name)

VARCHAR2 Returns a text status for an index that matches the

metadata of the input INDEX_OBJ

3D Geodatabase for CityGML 2019 119

index_status(table_name,

column_name,

schema_name)

VARCHAR2 Returns a text status for an index that matches the input

argument

status_normal_indexes

(schema_name)

STRARRAY Returns an array of status reports for all normal indexes to

be found in INDEX_TABLE

status_spatial_indexes

(schema_name)

STRARRAY Returns an array of status reports for all spatial indexes to

be found in INDEX_TABLE

 Table 24: API of CITYDB_IDX package for Oracle

4.5 CITYDB_SRS

The package CITYDB_SRS provides functions and procedures dealing with the coordinate

reference system used for an 3D City Database instance. The most essential procedure is

change_schema_srid to change the reference system for all spatial columns within a

database schema. If a coordinate transformation is needed because an alternative reference

system shall be used, the value ‘1’ should be passed to the procedure as the third parameter. If

a wrong SRID had been chosen by mistake during setup, a coordinate transformation might

not be necessary in case the coordinate values of the city objects are already matching the new

reference system. Thus, the value 0 should be provided to the procedure, which then only

changes the spatial metadata to reflect the new reference system. It can also be omitted, as 0 is

the default value for the procedure. Either way, changing the CRS will drop and recreate the

spatial index for the affected column. Therefore, this operation can take a lot of time

depending on the size of the table. Note that in Oracle, the reference system cannot be

changed for another user schema. So, there is no schema_name parameter. The is also an

additional function called get_dim(column_name, table_name, schema_name)

to fetch the dimension of the spatial column which is either 2 or 3.

Function Return Type Explanation

change_column_srid

(table_name, column_name,

dimension, srid, do_transform,

geometry_type, schema_name)

void Changes the reference system for a given geometry

column. Spatial metadata is needed to recreate the

spatial index.

change_schema_srid (srid,

gml_srs_name, do_transform,

schema_name)

void Changes the reference system for all spatial columns

inside a database schema. The second parameter

needs to be a GML-compliant URN to the CRS (see

chapter 2.3.5)

check_srid (srid) TEXT Returns the message 'SRID ok' if the CRS with the

given EPSG code exists in the database. Returns

'SRID not ok' if not.

is_coord_ref_sys_3d (srid) INTEGER Tests if CRS with given EPSG code is a 3D CRS.

Returns 1 if yes and 0 if not.

is_db_coord_ref_sys_3d

(schema_name)

INTEGER Tests if the current CRS of a given schema is a 3D one.

Returns 1 if yes and 0 if not.

transform_or_null

(GEOMETRY, srid)

GEOMETRY Applies a coordinate transformation on the input

geometry with the given CRS. Returns NULL, if the input

geometry is not set.

Table 25: API of CITYDB_SRS package for PostgreSQL

120 3D Geodatabase for CityGML 2019

4.6 CITYDB_STAT

The package CITYDB_STAT currently only serves a single purpose: To count all entries in

all tables and generate a report as an array of string values (STRARRAY data type in Oracle,

text[] in PostgreSQL). The tabulator escape sequence \t is used to generate a nice

looking report for the Importer/Exporter.

Function Return Type Explanation

table_content (table_name,

schema_name)

NUMBER Returns the count result obtained from a query

against the given table

table_contents (schema_name) STRARRAY Returns a text array with row count results for most

tables in 3D City Database (excluding metadata

tables and system tables)

Table 26: API of CITYDB_STAT package for Oracle

4.7 CITYDB_OBJCLASS

The CITYDB_OBJCLASS package only provides two convenience functions to cast between

table names and ID values of the OBJECTCLASS table. In contrast to the previously

introduced packages these functions cannot be applied against different database schemas as

this would require dynamic SQL. While it would not be problem when converting single

values, the performance with dynamic SQL could be a lot worse when these functions are

integrated in a full table scan. Therefore, for PostgreSQL they are now part of the ‘citydb’

schema as pure SQL functions. In Oracle, they make up another PL/SQL package.

Function Return Type Explanation

objectclass_id_to_table_name

(objectclass_id)

VARCHAR2 Returns the corresponding table name to a given

object class ID

table_name_to_objectclass_ids

(table_name)

ID_ARRAY Returns an array of object class IDs that a are

managed in the given table

Table 27: API of CITYDB_OBJCLASS package for Oracle

4.8 CITYDB_DELETE

The package CITYDB_DELETE consists of several functions that facilitate to delete single

and multiple city objects. Each function automatically takes care of integrity constraints

between relations in the database. The package is meant as low-level API providing a delete

function for each relation (except for linking tables) – from a single polygon in the table

SURFACE_GEOMETRY (del_surface_geometry) up to a complete CityObject

(del_cityobject) or even a whole CityObjectGroup (del_cityobjectgroup). This

should help users to develop more complex delete operations on top of these low-level

functions without re-implementing their functionality.

Most of the stored procedures take the primary key ID value of the entry to be deleted as

input parameter and return the ID value if the entry has been successfully removed. So, if

NULL is returned, the entry is either already gone or the deletion did not work due to an error.

Nearly every delete function comes with a pendant to delete multiple entries at once. These

3D Geodatabase for CityGML 2019 121

alternative functions take an array of ID values as input and return an array of successfully

deleted entries. For PostgreSQL, the array is unrolled inside the functions as PL/pgSQL can

return a SET OF INTEGER values.

In order to illustrate the low-level approach of this package, assume a user wants to delete a

building feature together with all its nested sub features. For this purpose, the user calls the

del_building (or del_cityobject) function, which internally leads to subsequent

calls to the following stored procedures:

 del_building for the building and its dependent building parts (recursive call)

 del_thematic_surface for dependent boundary surfaces of the building (nested

call of del_opening for dependent openings of the boundary surfaces)

 del_building_installation for dependent outer installations of the building

(nested call of del_thematic_surface for boundary surfaces of the

installations)

 del_room for dependent rooms of the building (nested call of

del_thematic_surface for interior boundary surfaces,

del_building_installation for interior installation and

del_building_furniture for furniture within the room)

 del_address for dependent addresses that are not referenced by other buildings

and bridges

 del_implicit_geometry for each prototype geometry of a nested feature, e.g.

Openings, BuildingInstallation

 del_surface_geometry for deleting the geometry of the building and its nested

features

 del_cityobject to remove the entry in the CITYOBJECT table that corresponds

to the deleted building and the deleted child features (also deletes generic attributes,

external references, appearances, etc.)

Note, that global Appearances with no direct reference to a CityObject are not deleted during

such a deletion process. Therefore, the method cleanup_appearances should be

executed afterwards, to remove all Appearance information (incl. entries in tables

APPEAR_TO_SURFACE_DATA, SURFACE_DATA and TEX_IMAGE). Like with the stored

procedures from the CITYDB_OBJCLASS package, the delete functions are part of the

‘citydb’ schema and not ‘citydb_pkg’. This is not only because of a better performance

without dynamic SQL. It is mandatory as the code for the delete functions is generated

automatically based on the foreign keys.

The del_ prefix is used to not exceed 30 characters in Oracle. As explained in chapter 3.4,

managing different CityGML ADEs in different schema would require different delete scripts

for each schema. A simple code block to delete objects based on a query result can look like

this:

122 3D Geodatabase for CityGML 2019

Oracle:

-- single version

DECLARE

 deleted_id NUMBER;

 dummy_ids ID_ARRAY := ID_ARRAY();

BEGIN

 FOR rec IN (SELECT * FROM cityobject WHERE ...) LOOP

 deleted_id := citydb_delete.del_cityobject(rec.id);

 END LOOP;

 dummy_ids := citydb_delete.cleanup_appearances;

END;

-- array version

DECLARE

 pids ID_ARRAY := ID_ARRAY();

 deleted_ids ID_ARRAY := ID_ARRAY();

 dummy_ids ID_ARRAY := ID_ARRAY();

BEGIN

 SELECT id BULK COLLECT INTO pids

 FROM cityobject WHERE ...;

 deleted_ids := citydb_delete.del_cityobject(pids);

 dummy_ids := citydb_delete.cleanup_appearances;

END;

PostgreSQL:

-- single version

SELECT citydb.del_cityobject(id) FROM cityobject WHERE ... ;

SELECT citydb.cleanup_appearances();

-- array version

SELECT citydb.del_cityobject(array_agg(id))

 FROM cityobject WHERE ... ;

SELECT citydb.cleanup_appearances();

Which delete function to use depends on the ratio between the number of entries to be deleted

and the total count of objects in the database. One array delete executes each necessary query

only once compared to numerous single deletes and can be faster. However, if the array is

huge and covers a great portion of the table (say 20% of all rows) it might be faster to go for

the single version instead or batches of smaller arrays. Nested features are deleted with arrays

anyway.

The previously available CITYDB_DELETE_BY_LINEAGE package has been included into

the CITYDB_DELETE package and reduced to only one function. It allows to delete multiple

city objects that share a common value in the LINEAGE column of the CITYOBJECT table.

3D Geodatabase for CityGML 2019 123

The procedure cleanup_schema provides a convenient way to reset an entire 3DCityDB

instance under both Oracle and PostgreSQL. After invoking this procedure, all entries from all

tables are deleted and all sequences are reset.

The following table only lists functions that differ from each other where

del_cityobject stands for the general layout of a delete function:

Function Return Type Explanation

cleanup_appearances

(only_global)

ID_ARRAY Removes unreferenced Appearences incl.

SurfaceData and textures and returns an array of

their IDs. Pass 1 (default) to only delete global

appearances, or 0 to include local appearances

cleanup_schema

(schema_name)

void Truncates most tables and resets sequences in a

given 3D City Database schema

cleanup_table (table_name) ID_ARRAY Removes entries in given table which are not

referenced by any other entities

del_cityobject (NUMBER) NUMBER Removes the CityObject with the given ID incl. all

references to other tables. The ID value is returned

on success

del_cityobject (ID_ARRAY) ID_ARRAY Removes CityObjects with the given IDs incl. all

references to other tables. An array of IDs of

successfully deleted objects is returned

del_cityobjects_by_lineage

(lineage_value)

ID_ARRAY Removes all CityObjects on behalf of a LINEAGE

value and returns an array of their IDs

Table 28: API of CITYDB_DELETE package for PostgreSQL

Function Return Type Explanation

cleanup_appearances

(only_global)

SET OF INTEGER Removes unreferenced Appearences incl.

SurfaceData and textures and returns an set of their

IDs. Pass 1 (default) to only delete global

appearances, or 0 to include local appearances

cleanup_schema

(schema_name)

void Truncates most tables cascadingly and resets

sequences in a given 3D City Database schema

cleanup_table (table_name) SET OF INTEGER Removes entries in given table which are not

referenced by any other entities

del_cityobject (INTEGER) INTEGER Removes the CityObject with the given ID incl. all

references to other tables. The ID value is returned

on success

del_cityobject (INTEGER[]) SET OF INTEGER Removes CityObjects with the given IDs incl. all

references to other tables. A set of IDs of

successfully deleted objects is returned

del_cityobjects_by_lineage

(lineage_value)

SET OF INTEGER Removes all CityObjects on behalf of a LINEAGE

value and returns a set of deleted IDs

Table 29: API of CITYDB_DELETE package for PostgreSQL

4.9 CITYDB_ENVELOPE

The package CITYDB_ENVELOPE provides functions that allow a user to calculate the

maximum 3D bounding volume of a CityObject identified by its ID. For each feature type, a

corresponding function is provided starting with env_ prefix. In PostgreSQL, they are part of

an instance schema like ‘citydb’ and not ‘citydb_pkg’ due to unforeseen schema changes by

adding CityGML ADEs.

124 3D Geodatabase for CityGML 2019

The bounding volume is calculated by evaluating all geometries of the city object in all LoDs

including implicit geometries. In PostGIS, they are first collected and then fed to the

ST_3DExtent aggregate function which returns a BOX3D object. In Oracle the aggregate

function SDO_AGGR_MBR is used which produces a 3D optimized rectangle with only two

points. The box2envelope function turns this output into a diagonal cutting plane through the

calculated bounding volume. This surface representation follows the definition of the

ENVELOPE column of the CITYOBJECT table as discussed in chapter 2.3.3.2 (see also

Figure 29). All functions in this package return such a geometry.

The CITYDB_ENVELOPE API also allows for updating the ENVELOPE column of the city

objects with the calculated value (by simply setting the set_envelope argument that is

available for all functions to 1). This is useful, for instance, whenever one of the geometry

representations of the city object has been changed or if the ENVELOPE column could not be

(correctly) filled during import and, for example, is NULL.

To calculate and update the ENVELOPE of all city objects of a given feature type, use the

get_envelope_cityobjects function and provide the OBJECTCLASS_ID as

parameter. If 0 is passed as OBJECTCLASS_ID, then the ENVELOPE columns of all city

objects are updated. To update only those ENVELOPE columns having NULL as value, set the

only_if_null parameter to 1.

Function Return Type Explanation

box2envelope (BOX3D) GEOMETRY Takes a BOX3D and returns a 3D polygon that

represents a diagonal cutting plane through this

box. Under Oracle the input is an optimized 3D

rectangle (SDO_INTERPRETATION = 3)

env_cityobject (cityobject_id,

set_envelope)

GEOMETRY Returns the current envelope representation of the

given CityObject and optionally updates the

ENVELOPE column

get_envelope_cityobjects

(objectclass_id, set_envelope,

only_if_null)

GEOMETRY Returns the current envelope representation of all

CityObjects of given object class and optionally

updates the ENVELOPE column with the individual

bounding boxes

get_envelope_implicit_geometry

(implicit_rep_id, reference_point,

transformation_matrix)

GEOMETRY Returns the envelope of an implicit geometry which

has been transformed based on the passed

reference point and transformation matrix

update_bounds (old_box,

new_box)

GEOMETRY Takes two GEOMETRY objects to call

box2envelope and returns the result. If one side is

NULL, the non-empty input is returned.

Table 30: API of CITYDB_ENVELOPE package for PostgreSQL

3D Geodatabase for CityGML 2019 125

5 Importer / Exporter

The 3D City Database Importer/Exporter is a Java-based front-end for the 3D City Database

and allows for high-performance loading and extracting 3D city model data.

The supported import and export operations are:

 Import of CityGML models (cf. chapter 5.3);

 Export data as CityGML models (cf. chapter 5.4);

 Export data in KML/COLLADA/glTF format (cf. chapter 5.5); and

 Export data as spreadsheets (available as plugin, cf. chapter 6.2).

Please refer to chapter 3.1 for system requirements and a documentation of the installation

procedure.

The 3D City Database Importer/Exporter is free software under the Apache

License, Version 2.0. See the LICENSE.txt file shipped with the software

for more details. For a copy of the Apache License, Version 2.0, please visit

http://www.apache.org/licenses/.

5.1 Running and using the Importer / Exporter

The 3D City Database Importer/Exporter offers both a graphical user interface (GUI) and a

command line interface (CLI). The CLI allows for embedding the tool in batch processing

workflows and third-party applications. The usage of the CLI is documented in chapter 5.8.

To launch the GUI, simply use the starter scripts located in the bin subfolder of the

installation directory of the 3D City Database Importer/Exporter. A desktop icon as well as

shortcuts in the start menu of your operating system will additionally be available in case you

chose to create shortcuts during setup. Depending on your platform, one of the following

starter scripts is provided:

 3DCityDB-Importer-Exporter.bat (Microsoft Windows family)

 3DCityDB-Importer-Exporter.sh (UNIX/Linux/Mac OS family)

On most platforms, double-clicking the starter script or its shortcut runs the

Importer/Exporter.

For some UNIX/Linux distributions, you will have to run the starter script from within a shell

environment though. Please open your favourite shell and first check whether execution rights

are correctly set on the starter script. If not, change to the installation folder and enter the

following command to make the starter script executable for the owner of the file:

 chmod u+x 3DCityDB-Importer-Exporter.sh

Afterwards, simply run the software by issuing the following command:

 ./3DCityDB-Importer-Exporter.sh

http://www.apache.org/licenses/

126 3D Geodatabase for CityGML 2019

Note: With every release, the README.txt file in the installation folder provides up-to-

date and version-specific information on how to run the Importer/Exporter.

The starter scripts define default values for the Java Virtual Machine (JVM) that runs the

Importer/Exporter. Most importantly, they specify the minimum amount of main memory for

the application through the –Xms parameter of the JVM. The default value has been chosen to

be reasonable for most platforms but may need to be adapted to your needs before launching

the application (e.g., if you want to increase or limit the available main memory).

The graphical user interface of the Importer/Exporter is organized into four main components

as shown in Figure 55. A menu bar [1] is located either below (Windows, some Linux

distributions) or above (Mac, some Linux distributions) the title bar. The main application

window is divided into an operations window [2] that renders the user dialogs of the separate

operations of the Importer/Exporter and a console window [4] that displays log messages. Via

the View entry in the menu bar, the console window can be detached from the main window

and rendered in a separate window. At the bottom of the operations window, a status bar [3]

provides information about running processes and database connections.

Figure 55: Organization of the Importer/Exporter GUI.

The tab menu on top of the operations window lets you switch between the operations of the

Importer/Exporter and their user dialogs. The following tabs are available:

 Import Import of CityGML models into the database

 Export Export of city model data as CityGML

 KML/COLLADA/glTF Export Export of city model data in KML, COLLADA

 or glTF format

2 4

3

3D Geodatabase for CityGML 2019 127

 Database Database connection settings and operations

 Preferences Preference settings for each operation

Note: If you have installed plugins, the tab menu may contain additional entries. Please

refer to the documentation of your plugin in this case.

The main menu bar [1] offers the entries File, Project, View and Help. The File

menu only contains one entry Exit to close the application.

The Project menu lets a user store and load settings from a config file. The separate menu

entries provide the following functionality:

Open Project… Load a config file and recover all settings from this file.

Save Project Save all settings made in the GUI to the default config

file.

Save Project As… Save all settings made in the GUI to a separate config

file.

Restore Default Settings Set all settings to default values.

Save Project XSD As… Save the XML Schema defining the XML structure of

config files to a separate file. The XML Schema is

helpful in case a user wants to manually edit the config

file. Only config files conforming to the XML Schema

definition will be successfully loaded by the

Importer/Exporter.

Recently Used Projects… List of recently loaded config files.

Note: The Importer/Exporter uses one default config file per operating system user running

the Importer/Exporter. All settings made in the GUI are automatically stored to this

default config file when the Importer/Exporter is closed and are loaded from this file

upon program start. The default config file is named project.xml and is stored in

the home directory of the user. Precisely, you will find the config file in the subfolder

3dcitydb/importer-exporter/config. However, the location of the home

directory differs for different operating systems. Using environment variables, the

location can be identified dynamically:

 %HOMEDRIVE%%HOMEPATH%\3dcitydb\importer-

exporter\config (Windows 7 and higher)

 $HOME/3dcitydb/importer-exporter/config (UNIX/Linux, Mac

OS families)

The View menu affects the GUI elements of the Importer/Exporter and offers the following

entries:

Open map window Opens the 2D map window for bounding box

selections (cf. chapter 5.7).

128 3D Geodatabase for CityGML 2019

Detach Console Renders the console window in a separate application

window.

Restore default

perspective

Restores the GUI to its default settings.

Finally, the Help menu gives access to an Info dialog and the Read Me file shipped with

the Importer/Exporter. Amongst other information, the Info dialog displays the official

version and build number of the Importer/Exporter.

5.2 Database connections and operations

The Database tab of the operations window shown in the figure below allows a user to

manage and establish database connections [1] and to execute database operations [2].

Figure 56: Database tab.

 Managing and establishing database connections
In order to connect to an instance of the 3D City Database, valid connection parameters must

be provided on the Database tab.

Mandatory database connection details comprise the username and password of the database

user, the type of the database, the server name (network name or IP address) and port number

(default: 1521 for Oracle; 5432 for PostgreSQL) of the database server, and the database

name (when using Oracle, enter the database SID or service name here). The optional schema

parameter lets you define the database schema you which to connect to. Leave it empty to

connect to the default schema. More information on how to work with multiple 3DCityDB

1

2

3D Geodatabase for CityGML 2019 129

schemas can be found in chapter 3.4. If you need assistance, ask your database administrator

for connection details and schemas. For convenience, a user can choose to save the password

in the config file of the Importer/Exporter. Please be aware that the password will be stored as

plain text.

To manage more than one database connection, connection details are assigned a short

description text. The drop-down list at the top of the Database tab allows a user to switch

between connections based on their description. By using the Apply, New, Copy and Delete

buttons, edits to the parameters of the currently selected connection can be saved, a new

connection with empty connections details can be created, and existing connections can be

copied or deleted from the list.

The Connect / Disconnect button lets a user connect to / disconnect from a 3D City Database

instance based on the provided connection details.

Note: With this version of the Importer/Exporter, you will be able to connect to version

4.0 to 3.0 instances of the 3D City Database but not to any previous version. See

chapter 3.5 for a guide on how to migrate a version 2 and 3 instances of the 3D City

Database to the latest version 4.0.

The console window logs all messages that occur during the connection attempt. In case a

connection could not be established, error messages are displayed that help to identify the

cause of the connection problem. Otherwise, the console window contains information about

the connected 3D City Database instance like those shown in Figure 57. This information

comprises the version of the 3D City Database, the name and version of the underlying

database system, the connection string, the schema name, the spatial reference system ID

(SRID) as well as its name and GML encoding (as specified during the setup of the 3D City

Database), and whether the database tables are version-enabled.

Figure 57: Log messages for a successful database connection.

This information can be requested from a connected 3D City Database at any time using the

Info button on the Database tab. Upon successful connection, the description of the active

connection is moreover displayed in the title bar of the application window.

130 3D Geodatabase for CityGML 2019

 Executing database operations

After having established a connection to an instance of the 3D City Database, the Database

tab (cf. [2] in Figure 56) offers the following database operations to be executed on that

instance:

 Generating a database report;

 Calculating/updating the bounding box of selected feature types;

 Managing indexes on database tables;

 Managing the spatial reference system of the database; and

 Displaying supported CityGML ADEs.

Generating a database report. A database report is a list of all tables of the 3D City

Database together with their total number of rows. This operation therefore provides a quick

overview of the contents of the 3D City Database. The report is printed to the console

window.

Figure 58: Generating a database report.

If the database is version-enabled (Oracle only), the database report can be created for the

contents of a specific workspace [1] at a given timestamp [2]. If no workspace is specified, the

default workspace is chosen per default (Oracle: LIVE). If the workspace does not exist, a

corresponding error message is provided. Workspaces are not a feature of the 3D City

Database but are managed through the Oracle Workspace Manager tool. Please refer to the

Oracle database documentation for details. Since PostgreSQL currently does not support

workspaces, the corresponding input fields are disabled when connecting to a 3D City

Database running on PostgreSQL.

Calculating/updating the bounding box. This dialog lets you calculate the 2D bounding box

of the city objects stored in the database. The bounding box is useful, for instance, as input to

spatial filters in CityGML imports and exports as well as KML/COLLADA/glTF exports (see

documentation of the corresponding operations).

1 2

3D Geodatabase for CityGML 2019 131

Figure 59: Calculating the bounding box for selected feature types.

The coordinate values of the lower left (xmin, ymin) and upper right (xmax, ymax) corner of the

calculated bounding box are rendered in the corresponding fields of the dialog [3]. The values

are also copied to the clipboard of your operating system and can therefore easily be pasted

into the import and export dialogs. You can also manually copy the values to the clipboard by

clicking the button [4], or by right-clicking on a data field [3] and choosing the

corresponding option from the context menu.

The calculation of the bounding box can be restricted to a specific city object type such as

Building or WaterBody [1]. Like the generation of a database report, the user can request

the bounding box for city objects living in a specific workspace at a given timestamp if the

database is version-enabled (Oracle only). The coordinate values can optionally be

transformed into a user-defined coordinate reference system that is available from the drop-

down list [2]. Per default, the coordinate values are presented in the same reference system as

specified for the 3D City Database instance during setup. See chapter 2.3.5 for details on how

to define and manage user-defined reference systems.

By using the map button [4], the calculated bounding box is rendered in a separate 2D map

window for visual inspection as shown below. The usage of this map window is described in

chapter 5.7.

3

1

2
5

4

132 3D Geodatabase for CityGML 2019

Figure 60: Map window for displaying and choosing bounding boxes. Note that the coordinate values of the

bounding box are shown in the upper left component.

The calculation of the bounding box is based on the values stored in the ENVELOPE column

of the CITYOBJECT table. If this column is NULL or contains an incorrect value (e.g., in case

the value could not correctly filled during import or the geometry representation of a city

object has been changed), then the resulting bounding box will be wrong and subsequent

operations might not provide the expected result. To fix the ENVELOPE values in the

database, simply let the Importer/Exporter create missing values (i.e., replace NULL values)

or recreate all values by clicking on the corresponding buttons [5]. This update process either

affects only the city objects of a given feature type or all city objects based on the selection

made in [1].

Note: This process directly updates the ENVELOPE column of the affected city objects and

might take long to complete since the new values are calculated by evaluating all

geometries of the city objects in all LoDs including implicit geometries.

Managing indexes. The Importer/Exporter allows the user to manually activate or deactivate

indexes on predefined tables of the 3D City Database schema, and to check their status.

3D Geodatabase for CityGML 2019 133

Figure 61: Managing spatial and normal indexes.

The operation dialog differentiates between spatial indexes on geometry columns and normal

indexes on columns with any other datatype [1]. The buttons Activate, Deactivate, and Status

trigger a corresponding database process on spatial indexes only, normal indexes only or both

index types depending on which checkboxes are selected [1]. Again, the user can define a

workspace and timestamp on which the operation shall be executed if the database is version-

enabled (Oracle only).

The index operations only affect the following subset of all indexes defined by the 3D City

Database schema:

 Spatial index on column ENVELOPE of table CITYOBJECT

 Spatial index on column GEOMETRY of table SURFACE_GEOMETRY

 Spatial index on column SOLID_GEOMETRY of table SURFACE_GEOMETRY

 Normal index on columns GMLID, GMLID_CODESPACE of table CITYOBJECT

 Normal index on column LINEAGE of table CITYOBJECT

 Normal index on columns GMLID, GMLID_CODESPACE of table

SURFACE_GEOMETRY

 Normal index on columns GMLID, GMLID_CODESPACE of table APPEARANCE

 Normal index on column THEME of table APPEARANCE

 Normal index on columns GMLID, GMLID_CODESPACE of table SURFACE_DATA

 Normal index on columns GMLID, GMLID_CODESPACE of table ADDRESS

The result of an index operation is reported in the console window as shown below. For

instance, Figure 62 shows the result of a status query on both spatial and normal indexes. The

status ON means that the corresponding index is enabled.

1

134 3D Geodatabase for CityGML 2019

Figure 62: Result of a status query on spatial and normal indexes.

Note: It is strongly recommended to deactivate the spatial indexes before running a

CityGML import on a big amount of data and to reactive the spatial indexes

afterwards. This way the import will typically be a lot faster than with spatial indexes

enabled. The situation may be different if only a small dataset is to be imported.

Note: Activating and deactivating indexes can take a long time, especially if the database

fill level is high. Note that the operation cannot be aborted by the user since this

would result in an inconsistent database state.

Managing the spatial reference system of the database. When setting up a 3DCityDB

instance, you have to choose a spatial reference system (SRS) by picking a spatial reference

ID (SRID) supported by the database and a corresponding SRS name identifier

(gml:srsName) that is used in CityGML exports (see chapter 3.3). These settings can be easily

changed at any later time using the reference system operation.

Figure 63: Changing the SRS information of the 3DCityDB instance.

After connecting to a 3DCityDB, the SRID and gml:srsName input fields shown in the above

dialog [1] are assigned the current values from the database. Simply edit the fields to pick a

new SRID or SRS name identifier. Since changing the SRID potentially affects all geometries

in your database and thus may take a long time to complete, the SRID field is disabled per

default. Click on Edit [2] to enable changes to this field. Use the Check button [2] to make

sure that your new SRID value is supported by the database. The gml:srsName field provides

a drop-down list of common SRS identifier encoding schemes (such as OGC URN encoding,

1
2

3

3D Geodatabase for CityGML 2019 135

see chapter 2.3.5). You may pick one of these proposals (be careful to replace the

HEIGHT_SRID token with the correct value if required) or enter any other value.

When changing the SRID, you can choose whether the coordinates of geometry objects

already stored in the database should be transformed to the new SRID or whether only the

metadata should be updated [3]. The latter option might be enough, for example, if you

accidentally picked a wrong SRID that does not match the imported geometries when setting

up the database, and you simply want to correct this mistake.

Click on Apply to update the reference system information in the database according to your

settings. The Restore button lets you discard any changes made to the SRID and gml:srsName

fields.

Note: If you just want to use different gml:srsName values for different CityGML exports,

then instead of changing the identifier in the database before every export it is

simpler to create multiple user-defined reference systems for the same SRID (cf.

chapter 5.6.4) and pick one for each CityGML export (cf. chapter 5.4).

Displaying supported CityGML ADEs. This tab provides a list of all CityGML Application

Domain Extensions (ADEs) that are registered in the 3DCityDB instance and/or are supported

by the Importer/Exporter. The following screenshot shows the corresponding dialog.

Figure 64: Table of all supported CityGML ADEs.

The ADE table [1] contains one entry per CityGML ADE. Each entry lists the name and the

version of the ADE and indicates whether it is supported by the database and/or the

Importer/Exporter (using check or cross signs). Database support requires that the ADE has

been successfully registered in the 3DCityDB instance using the ADE Manager Plugin (see

chapter Fehler! Verweisquelle konnte nicht gefunden werden.). Additional support by the

mporter/Exporter requires that a corresponding ADE extension has been copied into the ade-

extensions folder within the installation directory of the Importer/Exporter. Only if both

conditions are met both fields will contain a check sign. If no ADE has been detected upon

database connection, the table remains empty.

In the example of Figure 64, there is only an Importer/Exporter extension for an ADE called

TestADE but the connected 3DCityDB instance lacks support for it. TestADE data would

therefore not be handled by the Importer/Exporter and thus not stored into the database in this

scenario.

1

136 3D Geodatabase for CityGML 2019

If you select an entry in the ADE table and click the Info button (or simply double-click on

the entry), metadata about the ADE will be displayed in a separate window as shown below.

The Status field shows whether the ADE is fully supported, or some user action is required.

Figure 65: ADE metadata dialog.

3D Geodatabase for CityGML 2019 137

5.3 Importing CityGML files

To load 3D city model content into a 3D City Database instance, the Importer/Exporter

supports the import of CityGML files. Supported CityGML versions are 2.0.0, 1.0.0 and

0.4.0. The CityGML import operation is available on the Import tab of the operations

window as shown below.

Figure 66: The CityGML import dialog.

Input file selection. At the top of the Import dialog [1], a list of one or more CityGML files

to be imported must be provided. Files can be selected through clicking on the Browse button,

which opens a regular file selection dialog. Alternatively, you can drag&drop files from your

preferred file explorer onto the Import tab. If the file list already contains entries, the

drag&drop operation will replace its content. If you want to keep the previous entries and

only append additional files, keep the CTRL key pressed while dropping (on Windows). The

2

1

3

4

5

6

7

8 9

138 3D Geodatabase for CityGML 2019

Remove button or DEL key lets you remove selected entries from the input files. Note that

adding folders to the list is also supported. Each folder will be recursively scanned for

CityGML files, and every CityGML file found will be imported.

The importer supports the following file formats for CityGML datasets: 1) regular XML files

(*.gml, *.xml), 2) GZIP compressed XML files (*.gz, *.gzip), and 3) ZIP archives (*.zip).

ZIP archives are recursively scanned for contained XML files. Additional files such as texture

images will also be imported from the ZIP archive if they are correctly referenced from the

XML file(s) using relative paths within the ZIP archive.

Workspace selection. If the 3D City Database instance is version-enabled (Oracle only), the

name of the workspace into which the data shall be imported can be specified [2]. If no

workspace is given, the default workspace is assumed (Oracle: LIVE).

Note: Importing into version-enabled tables typically takes considerably more time than

importing into non-version-enabled tables. The import time can be reduced if spatial

indexes are disabled beforehand.

Import filter. The import dialog allows for setting thematic and spatial filter criteria to

narrow down the set of CityGML top-level features that are to be imported from the input

files. The checkboxes on the left side of the import dialog let you choose between an attribute

filter, a feature counter filter, a spatial bounding box filter and a feature type filter. If more

than one filter is chosen, then the filter criteria are combined in a logical AND operation. If no

checkbox is enabled, no filter criteria are applied and thus all CityGML features contained in

the input file(s) will be imported.

 Attribute filter This filter takes a gml:id and/or a gml:name as parameter

[3] and only imports CityGML features having a matching

value for the respective attribute. More than one gml:id can

be provided in a comma-separated list. Multiple gml:name

values are not supported though.

 Counter filter The feature counter filter lets you import a subset of the top-

level features based on their position index over all input

file(s). Simply provide the lower and upper boundary [4] for

the position index to define the subset (both boundary limits

are inclusive).

 Bounding box filter This filter takes a 2D bounding box as parameter that is given

by the coordinate values of its lower left (xmin, ymin) and upper

right corner (xmax, ymax) [5]. The bounding box is evaluated

against the gml:boundedBy property of the CityGML input

features. You can choose whether features overlapping with

the provided bounding box are to be imported, or whether

features must be inside of it.

 Feature type filter With the feature types filter, you can restrict the import to one

or more CityGML features types by enabling the

3D Geodatabase for CityGML 2019 139

corresponding checkboxes [7]. Only features of the chosen

type(s) will be imported.

Note: All filters only work on top-level features but not on nested sub-features.

For the bounding box filter, make sure that you choose a coordinate reference system from the

drop-down choice list that matches the provided coordinate values. Otherwise, the spatial

filter may not work as expected. The coordinate reference system list can be augmented with

user-defined reference systems (see chapter 5.6.4 for more information).

The coordinate values of the bounding box filter can either be entered manually or chosen

interactively in a 2D map window. To open the map window, click on the map button [6].

Figure 67: Bounding box selection using the 2D map window.

In the map window, keep the left mouse button clicked while holding the ALT key. This lets

you draw a bounding box on the map. In order to move the map to a specific location or

address, simply enter the location or address in the input field on top of the map and click the

Go button or use the map navigation controls. If you are happy with the bounding box

selection, click the Apply button. This will close the map window and carry the coordinate

values of the selected area into the corresponding fields of the bounding box filter [5]. Click

Cancel if you want to close the map window but skip your selection. A more comprehensive

guide on how to use the map window is provided in chapter 5.7.

140 3D Geodatabase for CityGML 2019

With the button on the bounding box filter dialog [6], you can copy a bounding box to the

clipboard, while the button pastes a bounding box from the clipboard to the input fields of

the bounding box filter [5] (or use the right-click context menu).

XML validation. Before importing, the CityGML input files can be validated against the

official CityGML XML schemas. Simply click the Just Validate button [9] in order to run the

validation process. Filter settings are not considered in this process. Note that this operation

does not require internet access since the XML schemas are packaged with the application.

The CityGML features are not imported into the database during validation. The validation

results are printed to the console window.

Note: It is strongly recommended that only CityGML files having successfully passed

XML validation are imported into the database. Otherwise, errors in the data may

lead to unexpected behavior or abnormal termination.

Import preferences. More fine-grained preference settings affecting the CityGML import are

available on the Preferences tab of the operations window. Make sure to check these

settings before starting the import process. A full documentation of the import preferences is

available in chapter 5.6.1. The following table provides a summary overview.

Preference name Description

Continuation
Metadata that is stored for every object in the database such as the

data lineage, the updating person or the creationDate property.

gml:id handling
Generates UUIDs where gml:ids are missing on input features or

replaces all gml:ids with UUIDs.

Address
Controls the way in which xAL address fragments are imported into the
database.

Appearance Defines whether appearance information is imported.

Geometry Allows for applying an affine transformation to the input geometry.

Indexes
Settings for automatically enabling/disabling spatial and normal indexes
during imports.

XML validation
Performs XML validation automatically and exclude invalid features
from being imported.

XSL transformation
Defines one or more XSLT stylesheets that shall be applied to the city
objects in the given order before import.

Import log Creates a list of all successfully imported CityGML top-level features.

Resources Allocation of computer resources used in the import operation.

Table 31: Summery overview of the import preferences.

CityGML import. Once all import settings are correct, the Import button [8] starts the import

process. If a database connection has not been established manually beforehand, the currently

selected entry on the Database tab is used to connect to the 3D City Database. The separate

steps of the import process as well as all errors that might occur during the import are reported

to the console window, whereas the overall progress is shown in a separate status window.

The import process can be aborted at any time by pressing the Cancel button in the status

window. The Importer/Exporter will make sure that all pending city objects are completely

imported before it terminates the import process.

3D Geodatabase for CityGML 2019 141

After having completed the import, a summary of the imported CityGML top-level features is

printed to the console window.

Note: The import operation does not automatically apply a coordinate transformation to

the internal reference system of the 3D City Database instance. Thus, if the

coordinate reference system of the CityGML input data does not match the

coordinate reference system defined for the 3D City Database instance, the user must

transform the coordinate values before importing the data (or use an affine

transformation during import if this is enough). A possible workaround procedure

can be realized as follows:

1) Set up a second (temporary) instance of the 3D City Database with an internal

CRS matching the CRS of the CityGML instance document.

2) Import the dataset into this second 3D City Database instance.

3) Export the data from this second instance into the target CRS by applying a

coordinate transformation (see CityGML export documentation in chapter 5.4).

4) The exported CityGML document now matches the CRS of the target 3D City

Database instance and can be imported into that database. The temporary

database instance can be dropped.

Alternatively, you can change the reference system in the database to the one used by

the imported geometries (see the corresponding database operation in chapter 5.2.2).

 Note: The Importer/Exporter does not check by any means whether a CityGML feature

from an input file already exists in the database. Thus, if an import is executed twice

on the same dataset, all CityGML features contained in the dataset will be imported

twice.

142 3D Geodatabase for CityGML 2019

5.4 Exporting to CityGML

3D city model content stored in a 3D City Database instance can be fully or partially exported

as CityGML datasets. The CityGML export is available on the Export tab of the operations

window as depicted in the following figure.

Figure 68: The CityGML export dialog.

Output file selection. At the top of the export dialog, the folder and filename of the target

CityGML dataset must be specified [1]. You can either manually enter the target file or open a

file selection dialog via the Browse button.

The exporter supports the following file formats for writing CityGML datasets: 1) regular

XML files (*.gml, *.xml), 2) GZIP compressed XML files (*.gz, *.gzip), and 3) ZIP archives

(*.zip). Simply make sure to add the file extension of the file format of your choice to the

2

1

4

3

5 6

3D Geodatabase for CityGML 2019 143

name of the target file in [1]. When choosing ZIP as target format, then all additional files

such as texture images are also written into the ZIP container per default.

The export operation supports tiled exports, which typically results in multiple datasets being

written to the file system. Nevertheless, also for tiled exports, only a single target file must be

specified. More details on tiled exports are provided below and in chapter 5.6.2.2.

Workspace selection. If the 3D City Database instance is version-enabled (Oracle only), the

name of the workspace and the timestamp from which the data shall be exported can be

specified [2]. If no workspace is provided, the default workspace is assumed (Oracle: LIVE).

Coordinate transformation. In general, coordinate values of geometry objects are associated

with the coordinate reference system defined for the 3D City Database instance during setup

and are exported “as is” from the database. The export operation allows a user to apply a

coordinate transformation to another reference system during export. The target coordinate

reference system is chosen from the corresponding drop-down list [3]. This list can be

augmented with user-defined reference systems (cf. chapter 5.6.4 for more details). When

picking the entry “Same as in database”, no transformation will be applied (default behavior).

Simple export filters. Like the import of CityGML datasets, the export operation supports

thematic and spatial filter criteria to restrict exports to subsets of the 3D city model content.

The checkboxes on the left side of the export dialog let you choose between an attribute filter,

an SQL filter, an LoD filter, a feature counter filter, a spatial bounding box filter and a feature

type filter [4]. If more than one filter is chosen, then the filter criteria are combined in a

logical AND operation. If no checkbox is enabled, no filter criteria are applied and thus all

CityGML features contained in the database will be exported.

The export filters work similar to the ones on the Import tab. Please refer to chapter 5.3 for

a description of the filter settings that are common to both operations.

 Attribute filter This filter lets you define values for the attributes gml:id,

gml:name and citydb:lineage which must be matched

by city objects to be exported. More than one gml:id can be

provided in a comma-separated list. Multiple gml:name or

citydb:lineage values are not supported though.

 SQL filter The attribute filter only operates on predefined attributes (see

above). To overcome this limitation, you can alternatively

choose the SQL Filter tab and enter an arbitrary SELECT

statement into the input field. The query must return a list of

database ids of the city objects to be exported (i.e., references

to the column ID of the table CITYOBJECT). The SQL filter

is very powerful as you can access every column of every

table in the 3DCityDB and make use of all functions and

operations offered by the underlying database system to

define your filter. More information about the SQL filter is

provided in chapter 5.4.1.

144 3D Geodatabase for CityGML 2019

 Bounding box filter The bounding box filter takes the same parameters as on the

Import tab. It is evaluated against the ENVELOPE column of

the CITYOBJECT table. The user can choose whether the

bounding box of top-level features only needs to overlap with

or must be strictly inside the filter geometry to satisfy the filter.

Alternatively, the export can be tiled by splitting the bounding

box into a regular grid. The number of rows and columns can be

defined by the user. Each tile of this grid is exported into its own

file. To make sure that every city object is assigned to one tile

only, the center point of its envelope is checked to be either

inside or on the left or top border of the tile.

 LoD filter This filter allows for exporting only specific LoDs of the city

objects. The LoD selection can be either AND or OR

combined. City objects not having a spatial representation in

one (OR) or all (AND) of the selected LoDs will not be

exported. The search depth parameter specifies how many

levels of nested city objects shall be considered when

searching for matching LoD representations.

When exporting 3D city model content to a single CityGML file, the file size may quickly

grow. Although the Importer/Exporter supports writing files of arbitrary size (only limited by

the file system of the operating system), such files might become too big to be processed by

other applications. A bounding box filter with tiling enabled is useful in this case because the

contents of each tile are written to separate and thus smaller files. The output files are put into

subfolders, and the names of both the subfolders and the output files can be augmented with

tile-specific suffixes (see the tiling options of the export preferences).

Note: Both the gml:name and the citydb:lineage filter internally use an SQL LIKE

operator and wildcards for identifying matches. For example, if you provide the

string “castle” as gml:name, this will be translated to “LIKE ‘%castle%’” in

the SQL query.

Note: When choosing a spatial bounding filter, make sure that spatial indexes are enabled

so that filtering can be performed on the database (use the index operation on the

Database tab to check the status of indexes, cf. chapter 5.2.2).

Note: If the entire 3D city model stored in the 3DCityDB instance shall be exported with

tiling enabled, then a bounding box spanning the overall area of the model must be

provided. This bounding box can be easily calculated on the Database tab (cf.

chapter 5.2.2).

Note: Using the center point of the envelope as criterion for a tiled export has a side-effect

when tiling is combined with the counter filter: the number of city objects on the tile

can be less than the number of city objects returned by the database query because

the tile check happens after the objects have been queried. Therefore, the counter

3D Geodatabase for CityGML 2019 145

filter only sets a possible maximum number in this filter combination. This is a

correct behavior, so the Importer/Exporter will not report any errors.

Note: The feature type filter in general behaves like for the CityGML import. However,

regarding city object groups the following rules apply:

1) If only the feature type CityObjectGroup is checked, then all city object groups

and all their group members (independent of their feature type) are exported.

2) If further feature types are selected in addition to CityObjectGroup, then only

group members matching those feature types are exported. Of course, all features

that match the type selection but are not group members are also exported.

Advanced XML export query. The export can also be controlled through a more advanced

query expression. In addition to the filter capabilities explained above, a query expression

offers logical operators (AND, OR, NOT) that combine thematic and spatial filters to complex

conditions. Moreover, it allows for defining projections on the properties of the exported city

objects and provides a filter for different appearance themes. Operators like the LoD filter or

tiling are, of course, also available for query expressions.

Query expressions are encoded in XML using a <citydb:query> element. The query

language used has been developed for the purpose of the 3DCityDB but is strongly inspired

by and very similar to the OGC Filter Encoding 2.0 standard and the query expressions used

by the OGC Web Feature Service 2.0 standard.

To enter an XML-based query expression, click on the Use XML query button [6] at the

bottom right of the export dialog (cf. Figure 68). The simple filter settings dialog will be

replaced with an XML input field like shown below.

Figure 69: Input field to enter an XML-based query expression for CityGML exports.

9

7 8

146 3D Geodatabase for CityGML 2019

The XML query is entered in [7]. This requires knowledge about the structure and the allowed

elements of the query language. A documentation of the query language is provided in chapter

5.4.2.

The new query button on the right side of the input field [8] can be used to create an empty

query element that contains all allowed subelements. The copy query button translates all

settings defined on the simple filter dialog (cf. Figure 68) to an XML query. The results of

both actions can therefore be used as starting point for defining your own query expression.

The validate query button [8] performs a validation of the query entered in [7] and prints

the validation report to the console window. Only valid query expressions are accepted by the

export operation. The Use simpe filter button [9] takes you back to the simple filter dialog.

You can also use an external XML editor to write XML query expressions. External editors

might be more comfortable to use and often offer additional tools like auto completion. The

XML Schema definition of the query language (required for validation and auto completion)

can be exported via “Project Save Project XSD As…” on the main menu of the

Importer/Exporter (cf. chapter 5.1). Make sure to use a <query> element as root element of

the query expression in your external XML editor.

Export preferences. In addition to the settings on the Export tab, more fine-grained

preference settings affecting the CityGML export are available on the Preferences tab of

the operations window. Make sure to check these settings before starting the export process.

A full documentation of the export preferences can be found in chapter 5.6.2. The following

table provides a summary overview.

Preference name Description

CityGML version CityGML version to be used for exports.

Tiling options
More settings for tiled exports. Requires that tiling is enabled on the
bounding box filter.

CityObjectGroup Defines whether group members are exported by value or by reference.

Address
Controls the way in which xAL address fragments are exported from the
database.

Appearance Defines whether appearance information is exported.

XLinks
Controls whether referenced features or geometry objects are exported
using XLinks or as deep copies.

XSL transformation
Defines one or more XSLT stylesheets that shall be applied to the
exported city objects in the given order before writing them to file.

Resources Allocation of computer resources used in the export operation.

Table 32: Summery overview of the export preferences.

CityGML export. Having completed all settings, the CityGML data export is triggered with

the Export button [5] at the bottom of the dialog (cf. Figure 68). If a database connection has

not been established manually beforehand, the currently selected entry on the Database tab

is used to connect to the 3D City Database. Progress information is displayed within a

separate status window. This status window also offers a Cancel button that lets a user abort

the export process. The separate steps of the export process as well as possible error messages

are reported to the console window.

3D Geodatabase for CityGML 2019 147

 SQL queries

The simple filter settings on the Export tab of the Importer/Exporter support user-defined

SQL queries. The figure below shows the corresponding SQL input field.

Figure 70: Input field to enter a SQL query for CityGML exports.

The SQL query is entered in [1]. The + and - buttons [2] on the right side of the input field

allow for increasing or reducing the size of the input field.

In general, any SELECT statement supported by the underlying database system can be used

as SQL filter. The query may operate on all tables and columns of the database instance and

may involve any database function or operator. The SQL filter therefore provides a high

degree of flexibility for querying content from the 3DCityDB.

The only mandatory restriction is that the SQL query must return a list of ID values of the

selected city objects. Put differently, the result set returned by the query may only contain a

single column with references to the ID column of the CITYOBJECT table. The name of the

result column can be freely chosen, and the result set may contain duplicate ID values. Of

course, it must also be ensured that the SELECT statement follows the specification of the

database system.

The following example shows a simple query that selects all city objects having a generic

attribute of name energy_level with a double value less than 10.

select cityobject_id from cityobject_genericattrib

 where attrname='energy_level' and realval < 10

The CITYOBJECT_ID column of CITYOBJECT_GENERICATTRIB stores foreign keys to

the ID column of CITYOBJECT. The return set therefore fulfills the above requirement.

Note that you do not have to care about the type of the city objects belonging to the ID values

in the return set. Since the SQL filter is evaluated together with all other filter settings on the

Export tab, the export operation will automatically make sure that only top-level features in

accordance with the feature type filter are exported. For example, the above query might

return ID values of buildings, city furnitures, windows or traffic surfaces. If, however, only

buildings have been chosen in the feature type filter, then all ID values in the result set not

belonging to buildings will be ignored. This allows for writing generic queries that can be

reused in different filter combinations. Of course, you may also limit the result set to specific

city objects if you like.

1

2

148 3D Geodatabase for CityGML 2019

The following example illustrates a more complex query selecting all buildings having at least

one door object.

select t.building_id from thematic_surface t

 inner join opening_to_them_surface o2t on

 o2t.thematic_surface_id = t.id

 inner join opening o on o.id = o2t.opening_id

 where o.objectclass_id = 39

 group by t.building_id

 having count(distinct o.id) > 0

Security note: Other statements than SELECT such as UPDATE, DELETE or DDL commands

will be rejected and yield an error message. However, in principle, it is possible

to create database functions that can be invoked with a SELECT statement and

that delete or change content in the database. An example are the DELETE

functions offered by the 3DCityDB itself (cf. chapter 4.8). For this reason, the

export operation scans the SQL query for these well-known DELETE functions

and refuses to execute it in case one is found. However, similar functions can

also be created after setting up the 3DCityDB schema and thus are not known

to the export operation a priori. If such functions exist and a user of the

Importer/Exporter shall not be able to accidentically invoke them through an

SQL query, then it is strongly recommended that the user may only connect

to the 3DCityDB instance via a read-only user (cf. chapter 3.4.2).

3D Geodatabase for CityGML 2019 149

 XML query expressions

A query expression is an action that directs the export operation to search the 3DCityDB for

city objects that satisfy some filter expression encoded within the query. Query expressions

are given in XML using a <query> root element. The XML language used is specific to the

Importer/Exporter and the 3DCityDB but draws many concepts from OGC standards such as

Filter Encoding (FE) 2.0 and Web Feature Service (WFS) 2.0.

Note: All XML elements of the query language are defined in the XML namespace

http://www.3dcitydb.org/importer-exporter/config. Simply define this namespace as

default namespace on your <query> root element.

A query expression may contain a typeNames parameter, a projection clause, a selection

clause, a counter filter, an LoD filter, an appearance filter, tiling options and a targetSrid

attribute for coordinate transformations.

<typeNames> Lists the name of one or more feature types to query

(optional).

<propertyNames> Projection clause that identifies a subset of optional feature

properties that shall be kept or removed in the target dataset

(optional).

<filter> Selection clause that specifies criteria that conditionally select

city objects from the 3DCityDB (optional).

<count> Limits the number of requested city objects that are exported

to the target dataset (optional).

<lod> Limits the LoDs of the exported city objects to a given subset

(optional).

<appearance> Limits the appearances of the exported city objects to a given

subset (optional).

<tiling> Defines a tiling scheme for the export (optional).

targetSrid Defines a coordinate transformation (optional).

5.4.2.1 <typeNames> parameter

The <typeNames> parameter lists the name of one or more feature types to query from the

3DCityDB. Each name is given as xsd:QName and must use an official XML namespace from

CityGML 2.0 or 1.0. Only top-level feature types are supported. The CityGML version of the

associated XML namespace determines the CityGML version used for the export dataset.

Namespaces from different CityGML versions shall not be mixed.

The following example shows how to query CityGML 2.0 bridges and buildings:

<query xmlns="http://www.3dcitydb.org/importer-exporter/config">
 <typeNames>
 <typeName xmlns:brid="http://www.opengis.net/citygml/bridge/2.0">brid:Bridge</typeName>
 <typeName xmlns:bldg="http://www.opengis.net/citygml/building/2.0">bldg:Building</typeName>
 </typeNames>
</query>

http://www.3dcitydb.org/importer-exporter/config

150 3D Geodatabase for CityGML 2019

If you want to query all feature types, then simply use the name core:_CityObject of the

abstract base type in CityGML, or just skip the <typeNames> paramenter.

The following table shows all supported top-level feature types together with their official

CityGML XML namespace(s) and their recommended XML prefix.

Feature type XML prefix XML namespace

_CityObject core
http://www.opengis.net/citygml/2.0
http://www.opengis.net/citygml/1.0

Building bldg
http://www.opengis.net/citygml/building/2.0
http://www.opengis.net/citygml/building/1.0

Bridge brid http://www.opengis.net/citygml/bridge/2.0

Tunnel tun http://www.opengis.net/citygml/tunnel/2.0

TransportationComplex tran
http://www.opengis.net/citygml/transportation/2.0
http://www.opengis.net/citygml/transportation/1.0

Road tran
http://www.opengis.net/citygml/transportation/2.0
http://www.opengis.net/citygml/transportation/1.0

Track tran
http://www.opengis.net/citygml/transportation/2.0
http://www.opengis.net/citygml/transportation/1.0

Square tran
http://www.opengis.net/citygml/transportation/2.0
http://www.opengis.net/citygml/transportation/1.0

Railway tran
http://www.opengis.net/citygml/transportation/2.0
http://www.opengis.net/citygml/transportation/1.0

CityFurniture frn
http://www.opengis.net/citygml/cityfurniture/2.0
http://www.opengis.net/citygml/cityfurniture/1.0

LandUse luse
http://www.opengis.net/citygml/landuse/2.0
http://www.opengis.net/citygml/landuse/1.0

WaterBody wtr
http://www.opengis.net/citygml/waterbody/2.0
http://www.opengis.net/citygml/waterbody/1.0

PlantCover veg
http://www.opengis.net/citygml/vegetation/2.0
http://www.opengis.net/citygml/vegetation/1.0

SolitaryVegetationObject veg
http://www.opengis.net/citygml/vegetation/2.0
http://www.opengis.net/citygml/vegetation/1.0

ReliefFeature dem
http://www.opengis.net/citygml/relief/2.0
http://www.opengis.net/citygml/relief/1.0

GenericCityObject gen
http://www.opengis.net/citygml/generics/2.0
http://www.opengis.net/citygml/generics/1.0

CityObjectGroup grp
http://www.opengis.net/citygml/cityobjectgroup/2.0
http://www.opengis.net/citygml/cityobjectgroup/1.0

Table 33: Supported CityGML top-level feature types together with their XML namespace.

In order to simplify typing the <typeNames> parameter, you can skip the namespace

declaration from the type names. The Importer/Exporter will then assume the corresponding

CityGML 2.0 namespace, but only if you use the recommended XML prefix from the table

above. The listing below exemplifies how to use this simplification to query all city furniture

objects from the 3DCityDB.

<query>
 <typeNames>
 <typeName>frn:CityFurniture</typeName>
 </typeNames>
</query>

3D Geodatabase for CityGML 2019 151

5.4.2.2 <propertyNames> projection clause

The <propertyNames> parameter identifies a subset of optional feature properties that

shall be kept or removed in the target dataset. Property projections can be defined for all

feature types that are part of the export, and thus not just for top-level feature types but also

for nested feature types.

The <propertyNames> parameter consists of one ore more <context> subelements,

each of which must define the target feature type through the typeName attribute. A context

then lists the name of one ore more feature properties and/or generic attributes. The mode

attribute determines the action for these properties: 1) if set to keep, then only the listed

properties are kept in the target dataset, and all other properties are deleted from the feature

(default); 2) if set to remove, then only the listed properties are deleted from the feature, and

all other properties are kept.

The following listing shows an example in which only the properties bldg:measuredHeight

and bldg:lod2Solid shall be exported for bldg:Building features (mode = keep). Note that this

implies that all other thematic and spatial properties of buildings are deleted. For

bldg:WallSurface features, all properties shall be kept besides the generic measure attribute

area (mode = remove).

<query>
 <propertyNames>
 <context typeName="bldg:Building" mode="keep">
 <propertyName>bldg:measuredHeight</propertyName>
 <propertyName>bldg:lod2Solid</propertyName>
 </context>
 <context typeName="bldg:WallSurface" mode="remove">
 <genericAttributeName type="measureAttribute">area</genericAttributeName>
 </context>
 </propertyNames>
</query>

The typeName of the target feature type must be given as xsd:QName. Like for the

<typeNames> parameter, the XML namespace declaration can be skipped if XML prefixes

from Table 33 are used. Multiple <context> elements for the same typeName are not

allowed.

Each propertyName must reference a valid property of the given feature type. This includes

properties that are defined for the feature type or inherited from a parent type in the CityGML

schemas, but also properties injected through an ADE. The propertyName is given as

xsd:QName. Mandatory properties like gml:id cannot be removed.

Generic attributes are also referenced by their name using a genericAttributeName element.

The name is case sensitive and thus must exactly match the name stored in the database. The

optional type attribute can be used to more precisely specify the target generic attribute. If

type is omitted, then all generic attributes matching the name are kept or removed,

independent of their type. If you want to address all generic attributes of a given type but

152 3D Geodatabase for CityGML 2019

independent of their name, then use a propertyName instead as illustrated below. In this

example, all gen:stringAttributes are removed from bldg:Building.

<query>
 <propertyNames>
 <context typeName="bldg:Building" mode="remove">
 <propertyName>gen:stringAttribute</propertyName>
 </context>
 </propertyNames>
</query>

The typeName may also point to an abstract feature type such as bldg:_AbstractBuilding or

core:_CityObject. The property projection is then applied to all subtypes and can even be

refined on the level of individual subtypes if the value of the mode attribute is identical. If

mode differs, then the context of the subtype overrides the context of the (abstract) supertype.

The listing below shows how to remove gml:name and generic attributes of name location

from all city objects by defining a projection context for the abstract type core:_CityObject.

The projection is refined for bldg:Building by additionally removing bldg:measuredHeight.

<query>
 <propertyNames>
 <context typeName="core:_CityObject" mode="remove">
 <propertyName>gml:name</propertyName>
 <genericAttributeName>location</genericAttributeName>
 </context>
 <context typeName="bldg:Building" mode="remove">
 <propertyName>bldg:measuredHeight</propertyName>
 </context>
 </propertyNames>
</query>

If mode would be switched to keep on the bldg:Building context in the above example, then

this would override the core:_CityObject settings for buildings. Thus, buildings would only

keep the bldg:measuredHeight property. The core:_CityObject context would, however, still

apply to all other city objects besides buildings.

5.4.2.3 <filter> selection clause

The <filter> parameter is used to identify a subset of city objects from the 3DCityDB

whose property values satisfy a set of logically connected predicates. If the property values of

a city object satisfy all the predicates in a filter, then that city object is part of the export.

Predicates can be expressed both on properties of the top-level feature types listed by the

<typeNames> parameter and on properties of their nested feature types. If the predicates

are not satisfied, then the entire top-level feature is not exported.

If the <typeNames> parameter lists more than one top-level feature type, then predicates

may only be expressed on properties common to all of them.

3D Geodatabase for CityGML 2019 153

The <filter> parameter supports comparison operators, spatial operators and logical

operators. The meaning of the operators is identical to the operators defined in the OGC

Filter Encoding (FE) 2.0 standard3, but their encoding slightly differs.

Most expressions are formed using a valueReference pointing to a property value and a literal

value that is checked against the property value.

5.4.2.3.1 Value references

A value reference is a string that represents a value that is to be evaluated by a predicate. The

string can be the name of a property of the feature type or an XML Path Language (XPath)

expression that represents the property of a nested feature type or a complex property.

Property names are given as xsd:QName. Examples for valid property names are

core:creationDate, bldg:measuredHeight, and tun:lod2MultiSurface.

In cases where a property of a nested feature type or complex property shall be evaluated, the

value reference must be encoded using XPath. The XPath expression is to be formulated

based on the XML encoding of CityGML. Note that the Importer/Exporter only supports a

subset of the full XPath language:

 Only the abbreviated form of the child and attribute axis specifier is supported.

 The context node is the top-level feature type to be exported. In case two or more top-

level feature types are listed by the <typeNames> parameter, then the context node

is their common parent type.

 Each step in the path may include an XPath predicate of the form “.=value” or

“child=value”. Equality tests can be logically combined using the "and" or "or"

operators. Indexes are not supported as XPath predicate.

 The schema-element() function is supported. It takes the xsd:QName of a feature type

as parameter. The function selects the given feature type and all its subtypes.

 The last step of the XPath must be a simple thematic attribute or a spatial property.

Property elements that contain a nested feature are not allowed as last step.

Assuming that bldg:Building is the top-level feature type to be exported, then the following

examples are valid XPath expressions:

 gen:stringAttribute/@gen:name selects the gen:name attribute of the generic

string attributes of the building

 gen:stringAttribute[@gen:name=’area’]/gen:value selects the gen:value of a

generic string attribute of name “area”

 bldg:boundedBy/bldg:WallSurface/bldg:lod2MultiSurface selects the spatial

LoD2 representation of the wall surfaces of the building

 bldg:boundedBy/bldg:WallSurface[@gml:id=’ID_01’ or gml:name=’wall’]/

bldg:opening/bldg:Door/core:creationDate selects the core:creationDate of

doors that are associated with wall surfaces having a specific gml:id or gml:name

3 http://docs.opengeospatial.org/is/09-026r2/09-026r2.html

154 3D Geodatabase for CityGML 2019

 bldg:boundedBy/schema-element(bldg:_BoundarySurface)/@gml:id selects the

gml:id attribute of all boundary surfaces of the building

 core:externalReference[core:informationSystem='http://somewhere.de']/

core:externalObject/core:name selects the core:name of the external object in an

external reference to a given information system

 gen:genericAttributeSet[@gen:name=’energy’]/gen:measureAttribute/

gen:value selects the gen:value of all generic measure attributes contained in the

generic attribute set named “energy”

Note: CityGML uses the eXtensible Address Language (xAL) to encode addresses of

buildings, bridges and tunnels. xAL is very flexible and allows an address to be

encoded in different ways, which makes XPath expressions complex to write. For

this reason, the Importer/Exporter uses a simple ADE that can be used in XPath

expressions to evaluate address elements such as the street or city name. More

information is provided in chapter 5.4.2.9.

5.4.2.3.2 Literals and geometric values

Literals are explicitly stated values that are evaluated against a valueReference. The type of

the literal value must match the type of the referenced value.

If the literal value is a geometric value, the value must be encoded using one of the geometry

types offered by the query language. Support for additional geometry encodings like (E)WKT

is planned for a future version. The following geometry types are available:

 <envelope>

 <point>

 <lineString>

 <polygon>

 <multiPoint> (list of <point>s)

 <multiLineString> (list of <lineString>s)

 <multiPolygon> (list of <polygon>s)

An <envelope> is defined by its <lowerCorner> and <upperCorner> elements that

carry the coordinate values. The coordinates of a <point> are provided by a <pos>

element, whereas <lineString> uses a <posList> element. A <polygon> can have

one <exterior> and zero or more <interior> rings. Rings are supposed to be closed

meaning that the first and the last coordinate tuple in the list must be identical. Interior rings

must be defined in opposite direction compared to the exterior ring.

The dimension of the points contained in a <posList> as well as in <exterior> and

<interior> rings can be denoted using the dimension attribute. Valid values are 2 (default)

or 3.

Every geometry type offers an optional srid attribute to reference an SRID defined in the

underlying database. If srid is present, then the coordinate tuples are assumed to be given in

the reference system associated with the corresponding SRID, which is also used in

3D Geodatabase for CityGML 2019 155

coordinate transformations. If srid is not present, then the coordinate tuples are assumed to be

given in the SRID of the 3DCityDB instance.

A 2D bounding box:

<envelope>
 <lowerCorner>30 10</lowerCorner>
 <upperCorner>60 20</upperCorner>
</envelope>

A 2D point:

<point>
 <pos>30 10</pos>
</point>

A 2D line string given in SRID 4326:

<lineString srid="4326">
 <posList dimension="2">45.67 88.56 55.56 89.44</posList>
</lineString>

A 2D polygon with hole:

<polygon>
 <exterior>35 10 45 45 15 40 10 20 35 10</exterior>
 <interior>20 30 35 35 30 20 20 30</interior>
</polygon>

5.4.2.3.3 Comparison operators

A comparison operator is used to form expressions that evaluate the mathematical comparison

between two arguments. The following binary comparisons are supported:

 <propertyIsEqualTo> (=)

 <propertyIsLessThan> (<)

 <propertyIsGreaterThan> (>)

 <propertyIsEqualTo> (=)

 <propertyIsLessThanOrEqualTo> (<=)

 <propertyIsGreaterThanOrEqualTo> (>=)

 <propertyIsNotEqualTo> (<>)

The optional matchCase attribute can be used to specify how string comparisons should be

performed. A value of true means that string comparisons shall match case (default), false

means caselessly.

The following example shows how to export all buildings from the 3DCityDB whose

bldg:measuredHeight attribute has a values less than 50.

<query>
 <typeNames>
 <typeName>bldg:Building</typeName>

156 3D Geodatabase for CityGML 2019

 </typeNames>
 <filter>
 <propertyIsLessThan>
 <valueReference>bldg:measuredHeight</valueReference>
 <literal>50</literal>
 </propertyIsLessThan>
 </filter>
</query>

Besides these default binary operators, the following additional comparison operators are

supported:

 <propertyIsLike>

 <propertyIsNull>

 <propertyIsBetween>

The <propertyIsLike> operator expresses a string comparison with pattern matching. A

combination of regular characters, the wildCard character (default: *), the singleCharacter

(default: .), and the escapeCharacter (default: \) define the pattern. The wildCard character

matches zero or more characters. The singleCharacter matches exactly one character. The

escapeCharacter is used to escape the meaning of the wildCard, singleCharacter and

escapeCharacter itself. The matchCase attribute is also available for the

<propertyIsLike> operator.

The following example shows how to find all roads whose gml:name contains the string

“main”.

<query>
 <typeNames>
 <typeName>tran:Road</typeName>
 </typeNames>
 <filter>
 <propertyIsLike wildCard="*" singleCharacter="." escapeCharacter="\" matchCase="false">
 <valueReference>gml:name</valueReference>
 <literal>*main*</literal>
 </propertyIsLike>
 </filter>
</query>

The <propertyIsNull> operator tests the specified property to see if it exists for the

feature type being evaluated.

The <propertyIsBetween> operator is a compact way of expressing a range check. The

lower and upper boundary values are inclusive. The operator is used below to find all

buildings having between 10 and 20 storeys.

<query>
 <typeNames>
 <typeName>bldg:Building</typeName>
 </typeNames>
 <filter>

3D Geodatabase for CityGML 2019 157

 <propertyIsBetween>
 <valueReference>bldg:storeysAboveGround</valueReference>
 <lowerBoundary>10</lowerBoundary>
 <upperBoundary>20</upperBoundary>
 </propertyIsBetween>
 </filter>
</query>

5.4.2.3.4 Spatial operators

A spatial operator determines whether its geometric arguments satisfy the stated spatial

relationship. The following operators are supported:

 <bbox>

 <equals>

 <disjoint>

 <touches>

 <within>

 <overlaps>

 <intersects>

 <contains>

 <dWithin>

 <beyond>

The semantics of the spatial operators are defined in OGC Filter Encoding 2.0, 7.8.3, and in

ISO 19125-1:2004, 6.1.14.

The valueReference of the spatial operators must point to a geometric property of the feature

type or its nested feature types. If valueReference is omitted, then the gml:boundedBy

property is used per default.

The listing below exemplifies how to use the <bbox> operator to find all city objects whose

envelope stored in gml:boundedBy is not disjoint with the given geometry.

<query>
 <filter>
 <bbox>
 <operand>
 <lowerCorner>30 10</lowerCorner>
 <upperCorner>60 20</upperCorner>
 </operand>
 </bbox>
 </filter>
</query>

The following example exports all buildings having a nested bldg:GroundSurface feature

whose bldg:lod2MultiSurface property intersects the given 2D polygon.

<query>
 <typeNames>

158 3D Geodatabase for CityGML 2019

 <typeName>bldg:Building</typeName>
 </typeNames>
 <filter>
 <intersects>
 <valueReference>bldg:boundedBy/bldg:GroundSurface/bldg:lod2MultiSurface</valueReference>
 <polygon>
 <exterior>35 10 45 45 15 40 10 20 35 10</exterior>
 </polygon>
 </intersects>
 </filter>
</query>

The last example demonstrates how to find all city furniture features whose envelope

geometry is within the distance of 80 meters from a given point location. The uom attribute

denotes the unit of measure for the distance. If uom is omitted, then the unit is taken from the

definition of the associated reference system. If the reference system lacks a unit definition,

meter is used as default value.

<query>
 <typeNames>
 <typeName>frn:CityFurniture</typeName>
 </typeNames>
 <filter>
 <dWithin>
 <valueReference>gml:boundedBy</valueReference>
 <point srid="4326">
 <pos>45.67 88.56</pos>
 </point>
 <distance uom="m">80</distance>
 </dWithin>
 </filter>
</query>

5.4.2.3.5 Logical operators

A logical operator can be used to combine one or more conditional expressions. The logical

operator <and> evaluates to true if all the combined expressions evaluate to true. The

operator <or> operator evaluates to true is any of the combined expressions evaluate to true.

The <not> operator reverses the logical value of an expression. Logical operators can

contain nested logical operators.

The following <and> filter combines a <propertyIsLessThan> comparison and a

spatial <dWithin> operator to find all buildings with a bldg:measuredHeight less than 50

and within a distance of 80 meters from a given point location.

<query>
 <typeNames>
 <typeName>bldg:Building</typeName>
 </typeNames>
 <filter>
 <and>
 <propertyIsLessThan>

3D Geodatabase for CityGML 2019 159

 <valueReference>bldg:measuredHeight</valueReference>
 <literal>50</literal>
 </propertyIsLessThan>
 <dWithin>
 <valueReference>gml:boundedBy</valueReference>
 <point srid="4326">
 <pos>45.67 88.56</pos>
 </point>
 <distance uom="m">80</distance>
 </dWithin>
 </and>
 </filter>
</query>

5.4.2.3.6 gml:id filter operator

The <resourceIds> operator is a compact way of finding city objects whose gml:id value

is contained in the provided list of <id> elements.

The example below exports all buildings whose gml:id matches one of the values in the list.

<query>
 <typeNames>
 <typeName>bldg:Building</typeName>
 </typeNames>
 <filter>
 <resourceIds>
 <id>ID_01</id>
 <id>ID_02</id>
 <id>ID_03</id>
 </resourceIds>
 </filter>
</query>

5.4.2.3.7 SQL operator

The <sql> operator lets you add arbitrary SQL queries to your filter expression. It can be

combined with all other predicates.

The SQL query is provided in the <select> subelement. It must follow the same rules as

discussed in chapter 5.4.1. Most importantly, the query shall return a list of id values that

reference the ID column of the table CITYOBJECT.

Note that the query is encoded in XML. Thus, characters having special meaning in the XML

language must be encoded using entity references. For example, the less-than sign < and

greater-than sign > must be encoded as < and > respectively. Instead of using entity

references, you can put your SQL string into a CDATA section. The string is then parsed as

purely character data.

For example, the following SQL filter expression selects all id values from city objects having

a generic attribute called energy_level whose double value is less than 10. The entity

reference < must be used here.

160 3D Geodatabase for CityGML 2019

<query>
 <filter>
 <sql>
 <select>select cityobject_id from cityobject_genericattrib
 where attrname='energy_level' and realval < 10</select>
 </sql>
 </filter>
</query>

When putting the same query into a CDATA section, the less-than sign must not be replaced

with an entity reference.

<query>
 <filter>
 <sql>
 <select>
 <![CDATA[
 select cityobject_id from cityobject_genericattrib
 where attrname='energy_level' and realval < 10
]]>
 </select>
 </sql>
 </filter>
</query>

5.4.2.4 <count> parameter

The <count> parameter limits the number of explicitly requested top-level city objects in

the export dataset.

The mandatory <upperLimit> element denotes the number of city objects to be exported.

When combined with the optional <lowerLimit> element, then the range of city objects

from the lowerLimit position to the upperLimit position in the result set are exported. Note

that both lowerLimit and upperLimit are inclusive in this case.

The following query shows how to export at maximum 10 buildings from the database, even

if more buildings satisfy the query expression.

<query>
 <typeNames>
 <typeName>bldg:Building</typeName>
 </typeNames>
 <count>
 <upperLimit>10</upperLimit>
 </count>
</query>

The following query would export at maximum 11 buildings (from the 10th to the 20th

building in the result set). If the result set contains less buildings, then the export dataset will,

of course, also contain less buildings.

<query>
 <typeNames>

3D Geodatabase for CityGML 2019 161

 <typeName>bldg:Building</typeName>
 </typeNames>
 <count>
 <lowerLimit>10</lowerLimit>
 <upperLimit>20</upperLimit>
 </count>
</query>

5.4.2.5 <lods> parameter

The <lods> parameter lists the level of details (LoD) that shall be exported for the requested

feature types.

The LoDs to be exported are given as list of one or more <lod> element having an integer

value between 0 and 4. The optional mode attribute specifies whether a feature must have a

spatial representation in all of the enumerated LoDs to be exported (mode = and), or whether

it is enough that the feature has a spatial representation in at least one LoD from the list (mode

= or) (default). If a feature has additional spatial representations in LoDs that are not listed,

then these representations are not exported. If a feature does not satisfy the LoD filter

condition at all, then it is skipped from the export.

Many feature types in CityGML can have nested sub-features. In such cases, the top-level

feature itself is not required to have a spatial property, but the geometry can be modelled for

its nested sub-features. For example, a bldg:Building feature does not need to provide an LoD

2 geometry through its own bldg:lod2Solid or bldg:lod2MultiSurface properties. Instead, it

can have a list of nested boundary surfaces such as bldg:WallSurface and bldg:RoofSurface

features that have own LoD 2 representations. Nevertheless, in this case the bldg:Building is

considered to be represented in LoD 2.

To handle these cases, the <lods> parameter offers the optional searchMode attribute. When

set to all, then all nested features are recursively scanned for having a spatial representation in

the provided list of LoDs. If an LoD representation is found for any (transitive) sub-feature,

then the top-level feature is considered to satisfy the filter condition. The all mode is,

however, expensive because it requires many joins and sub-queries on the database level.

When setting searchMode to depth instead, you can use the additional searchDepth attribute

to specify the maximum depth to which nested sub-features are searched for LoD

representations.

For example, the following bldg:Building feature has a nested bldg:BuildingInstallation sub-

feature and a nested bldg:WallSurface sub-feature. Moreover, the bldg:BuildingInstallation

itself has a nested bldg:RoofSurface sub-feature.

<bldg:Building>
 …
 <bldg:outerBuildingInstallation>
 <bldg:BuildingInstallation>
 <bldg:boundedBy>
 <bldg:RoofSurface> … </bldg:RoofSurface>
 </bldg:boundedBy>
 </bldg:BuildingInstallation>

162 3D Geodatabase for CityGML 2019

 </bldg:outerBuildingInstallation>
 …
 <bldg:boundedBy>
 <bldg:WallSurface> … </bldg:WallSurface>
 </bldg:boundedBy>
 …
</bldg:Building>

When setting searchDepth to 1 in this example, then not only the bldg:Building but also its

nested bldg:BuildingInstallation and bldg:WallSurface are searched for a matching LoD

representation, but not the bldg:RoofSurfaces of the bldg:BuildingInstallation. This roof

surface is on the nesting depth 2 when counted from the bldg:Building. Thus, searchDepth

would have to be set to 2 to also consider this bldg:RoofSurface feature.

Per default, searchMode is set to depth with a searchDepth of 1.

The following listing exemplifies the use of the <lods> parameter. In this example, all

tunnels shall be exported that have either an LoD 2 or LoD 3 representation. LoD

representations are also searched on sub-features up to a nesting depth of 2.

<query>
 <typeNames>
 <typeName>tun:Tunnel</typeName>
 </typeNames>
 <lods mode="or" searchMode="depth" searchDepth="2">
 <lod>2</lod>
 <lod>3</lod>
 </lods>
</query>

5.4.2.6 <appearance> parameter

The <appearance> parameter filters appearances by their theme. To keep an appearance in

the target dataset, the value of its app:theme attribute simply has to be enumerated using a

<theme> subelement. The string values must exactly match.

The app:theme attribute in CityGML is optional and thus can be null. To be able to also

express whether appearances having a null theme should be exported, the <appearance>

parameter offers another subelement <nullTheme>, which is of type Boolean. If set to true,

appearances with a null theme are exported, otherwise not (default).

The following query exports road features and appearances with theme summer and winter.

Since <nullTheme> is set to false, appearances lacking an app:theme attribute are not

exported.

<query>
 <typeNames>
 <typeName>tran:Road</typeName>
 </typeNames>
 <appearance>
 <nullTheme>false</nullTheme>

3D Geodatabase for CityGML 2019 163

 <theme>summer</theme>
 <theme>winter</theme>
 </appearance>
</query>

5.4.2.7 <tiling> parameter

The <tiling> parameter allows for exporting the requested top-level features in tiles.

Every tile is exported to its own target file within a separate subfolder of the export directory.

Like the tiling settings of the simple GUI-based export filter (cf. chapter 5.4), the <tiling>

parameter requires three mandatory inputs: the <extent> of the geographic region that

should be tiled and the number of <rows> and <columns> into which the region should be

evenly split. The <extent> must be provided as bounding box using a <lowerCorner>

and an <upperCorner> element.

The example below exports all buildings within the provided <extent> into 2x2 tiles.

<query>
 <typeNames>
 <typeName>bldg:Building</typeName>
 </typeNames>
 <tiling>
 <extent srid="4326">
 <lowerCorner>10.7005978 47.5707931</lowerCorner>
 <upperCorner>10.7093525 47.5767573</upperCorner>
 </extent>
 <rows>2</rows>
 <columns>2</columns>
 </tiling>
</query>

Besides the mandatory input, the optional <cityGMLTilingOptions> element can be

used to control the names of the subfolders and tile files, and whether tile information should

be stored as generic attribute. The following subelements are supported:

 <tilePath> Name of subfolder that is created for each tile

 (default: tile).

 <tilePathSuffix> Suffix to append to each <tilePath>. Allowed values

 are row_column (default), xMin_yMin, xMax_yMin,

 xMin_yMax, xMax_yMax and xMin_yMin_xMax_yMax.

 <tileNameSuffix> Suffix to append to each tile filename. Allowed values

 are none (default) and sameAsPath.

 <includeTileAsGenericAttribute> Add a generic attribute named

 TILE to each city object.

 <genericAttributeValue> Value for the generic attribute. Allowed values

 are identical to those for <tilePathSuffix>

 (default: xMin_yMin_xMax_yMax).

164 3D Geodatabase for CityGML 2019

If the <cityGMLTilingOptions> element is not present, then the settings defined for the

Tiling options export preference (cf. chapter 5.6.2.2) are used instead.

5.4.2.8 targetSrid attribute

The <query> element offers an optional targetSrid attribute. If targetSrid is present, then all

exported geometries will be transformed into the target coordinate reference system. The

targetSrid attribute must reference an SRID defined in the underlying database. The

transformation is performed using corresponding functions of the database system.

<query targetSrid="25832">
 …
</query>

5.4.2.9 Using address information and 3DCityDB metadata in queries

The 3DCityDB comes with a CityGML ADE that allows to easily use address information

and metadata columns in XML queries. The following table shows the XML namespaces to

be used with CityGML version 2.0 respectively 1.0 and the recommended XML prefix of the

3DCityDB ADE.

ADE XML prefix XML namespace

3DCityDB ADE citydb
http://www.3dcitydb.org/citygml-ade/3.0/citygml/2.0
http://www.3dcitydb.org/citygml-ade/3.0/citygml/1.0

Table 34: XML prefix and namespace of the 3DCityDB ADE.

Address information. CityGML uses the OASIS xAL standard for the representation of

address information. xAL is very flexible in that it supports various address styles that can be

XML-encoded in many ways. As a drawback, this flexibility makes it difficult to define a

filter on address elements (e.g., the street or the city) using an XPath expression based on

xAL. When importing address information into the 3DCityDB, the xAL address fragment is

parsed and mapped onto the columns STREET, HOUSE_NUMBER, PO_BOX, ZIP_CODE,

CITY, STATE and COUNTRY of the ADDRESS table. Thus, it is preferable and simpler to

express filter criteria on these columns.

For this reason, the 3DCityDB ADE injects additional properties into the core:Address feature

of CityGML that correspond to the columns of the ADDRESS table. By this means, these

properties can be used in filter expressions. The mapping between ADE properties and

columns of the ADDRESS table is shown below. Note that the citydb prefix must be

associated with the ADE XML namespace (see above). If omitted, the CityGML 2.0

namespace is assumed given that the prefix citydb is used.

ADE property
(injected into core:Address)

Data type Column of the ADDRESS table

citydb:street xs:string STREET

citydb:houseNumber xs:string HOUSE_NUMBER

citydb:poBox xs:string PO_BOX

citydb:zipCode xs:string ZIP_CODE

citydb:city xs:string CITY

3D Geodatabase for CityGML 2019 165

citydb:state xs:string STATE

citydb:country xs:string COUNTRY

Table 35: 3DCityDB ADE properties for accessing address information.

The following example illustrates how to query all buildings along the street Unter den

Linden. It uses the citydb:street ADE property as value reference in the filter expression.

<query>
 <typeNames>
 <typeName>bldg:Building</typeName>
 </typeNames>
 <filter>
 <propertyIsLike wildCard="*" singleCharacter="." escapeCharacter="\" matchCase="true">
 <valueReference>bldg:address/core:Address/citydb:street</valueReference>
 <literal>Unter den Linden*</literal>
 </propertyIsLike>
 </filter>
</query>

Metadata for city objects. The 3DCityDB stores database-specific metadata with every city

object using the columns LAST_MODIFICATION_DATE, UPDATING_PERSON,

REASON_FOR_UPDATE and LINEAGE of the CITYOBJECT table. In order to make these

metadata properties available in filter expressions, the 3DCityDB ADE injects them into the

CityGML core:_CityObject feature.

ADE property
(injected into core:_CityObject)

Data type Column of the ADDRESS table

citydb: lastModificationDate xs:string LAST_MODIFICATION_DATE

citydb: updatingPerson xs:string UPDATING_PERSON

citydb: reasonForUpdate xs:string REASON_FOR_UPDATE

citydb: lineage xs:string LINEAGE

Table 36: 3DCityDB ADE properties for accessing address information.

The properties can also be used in filter expressions. For instance, the query below fetches all

bridges that have been modified in the database after 2018-01-01.

<query>
 <typeNames>
 <typeName>brid:Bridge</typeName>
 </typeNames>
 <filter>
 <propertyIsGreaterThan>
 <valueReference>citydb:lastModificationDate</valueReference>
 <literal>2018-01-01</literal>
 </propertyIsGreaterThan>
 </filter>
</query>

166 3D Geodatabase for CityGML 2019

5.4.2.10 Using XML queries in batch processes

The Importer/Exporter offers a Command-Line Interface (CLI) which allows for embedding

the tool in batch processing workflows and third-party applications (cf. chapter 5.8). XML

queries can also be used in CityGML exports that are triggered via this CLI interface. For this

purpose, the XML query has to be copied into the config file that is used for running the

Importer/Exporter. This can be either the default config file (cf. chapter 5.1) or a local file that

is passed to the CLI using the -config command-line parameter.

Each config file must use a <project> root element associated with the XML namespace

http://www.3dcitydb.org/importer-exporter/config. Export settings are then provided in the

<export> subelement. The <query> element of an XML query expression can simply be

copied as child element of the <export> element. In addition, the useSimpleQuery attribute

on the <export> element has to be set to false.

The listing below shows an excerpt of a config file using an XML export query.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<project xmlns="http://www.3dcitydb.org/importer-exporter/config">
 <database>
 … database connection details go here …
 </database>
 <export useSimpleQuery="false">
 … copy your query here …
 <query>
 <typeNames>
 <typeName>bldg:Building</typeName>
 </typeNames>
 </query>
 … provide more export settings here …
 </export>
</project>

http://www.3dcitydb.org/importer-exporter/config

3D Geodatabase for CityGML 2019 167

5.5 Exporting to KML/COLLADA/glTF

3D City Database contents can be directly exported in KML [Wilson 2008], COLLADA

[Barners & Finch 2008], and glTF [Khronos 2016] formats for presentation, viewing, and

visual inspection in a broad range of applications such as Earth browsers like Google Earth,

ArcGIS Explorer, and Cesium etc.

Note: KML/COLLADA/glTF formatted exports come straight from the 3D City Database.

No direct file transformation CityGML KML/COLLADA/glTF is supported yet.

If a CityGML file shall be converted to KML/COLLADA/glTF, the CityGML

content must be imported into the database first and then exported into the

KML/COLLADA/glTF format.

The KML/COLLADA/glTF Export tab shown in Figure 71 collects all parameters required for

the export in a similar fashion as for a CityGML export (see the previous chapter). In

addition, more fine-grained preference settings affecting the KML/COLLADA/glTF export

are available on the Preferences tab of the operations window. Make sure to check these

settings before starting the export process. A full documentation of the export preferences is

available in chapter 5.6.3. The following table provides a brief summary overview.

Preference name Description

General Preference Some common settings of the exported files

Rendering Preferences

Defines the look of the KML/COLLADA/glTF exports when
visualized in the virtual globes (e.g. Cesium, Google Earth,
NASA World Wind, ESRI ArcGlobe). Each of the top-level
feature categories has its own Rendering settings here

Information Balloon
Preferences

KML offers the possibility of enriching its placemark elements
with information bubbles, so-called balloons. They can be
specified here

Altitude/Terrain
Preferences

Controls the way through which the exported datasets to be
perfectly displayed in the Earth browser

Table 37: Summery overview of the KML/COLLADA/glTF export preferences.

168 3D Geodatabase for CityGML 2019

Figure 71: The KML/COLLADA/glTF Export tab allowing for exporting KML/COLLADA/glTF models from

the 3DCityDB.

Output file selection. Type the filename directly into the text field or activate the file dialog

provided by the operating system after pushing the Browse button [1].

Workspace selection. If the 3D City Database instance is version-enabled (Oracle only), the

name of the workspace and the timestamp from which the data shall be exported can be

specified [2]. If no workspace is provided, the default workspace is assumed (Oracle: LIVE).

Export contents. These KML/COLLADA/glTF Exporter allows for specifying/selecting the

objects of interest for the export. These can be single objects or whole areas delimited by a

bounding box. Two radio buttons [3] at the left side of the export dialog let you choose

between those two options.

 Single object: Enter the GML IDs of the object(s) of interest. Multiple IDs have to be

separated by commas.

1

2

3

5
6

7

4

3D Geodatabase for CityGML 2019 169

 Bounding Box: Enter the coordinates of a bounding box defining the area of interest.

Objects are exported if their centroids lie within the specified bounding box. The

reference system used for defining the bounding box can be the same as the one used

in the database or any other one supported by Oracle and PostGIS. It is also possible to

add further user-defined reference systems (see the previous chapter). New reference

systems can be added to the Import/Export tool (preferences tab, node Database,

subnode Reference systems) if they are supported by the used database server. The

target system with the same dimensionality (WGS84 for 2D, WGS84 3D for 3D) will

be applied for the coordinate transformation during the KML/COLLADA/glTF

Export.

Tiling only applies to exports of areas defined by a bounding box. Tiled exports are used in

order to load and unload parts of the exported model depending on their current visibility

when viewed, for example, in Google Earth. Since the Earth Browser's responsiveness

decreases greatly with single files larger than 10 Mb, tiled exports (with tile file sizes usually

a lot smaller than that) are highly recommended. As mentioned above, only objects whose

centroids lie within the tile's bounding box will be exported.

There are three tiling modes [4] available for a KML/COLLADA/glTF export:

 no tiling: as the name implies, no tiling takes place. Just a single tile holding all the

exported objects is exported. This is only advisable when the resulting file is at most

10 Mb in size.

 automatic: the area enclosed by the bounding box will be exported in tiles having

roughly the side length set on the preferences tab under the node

KML/COLLADA/glTF Export, subnode Rendering (default value is 125m.). The

amount of exported rows and columns will be calculated by dividing the length and

width (in unit of meters) of the delimiting bounding box by the preferred tile side

length and rounding up the result. For example: if the user wants to export a 1000m x

1100m bounding box with a preferred tile side length of 300m, 4x4 tiles will be

generated since 1000/300 = 3.333 and 1100/300 = 3.666. This also implies: in case of

automatic tiling it cannot be guaranteed that tiles will be perfectly square, but they will

tend to.

 manual: the number of rows and columns can be freely set by the user. The area will

be divided in equally spaced portions horizontally and vertically in WGS84 and the

resulting tile sizes and forms will adapt to the values specified.

The exported tiles are organized with a hierarchical directory structure which means that each

individual tile file is named by its column number and all the tile files that belongs to the

same row are stored in a separate subfolder named by their corresponding row number. The

numbering of both rows and columns should start with 0. All those subfolders are in turn

stored in a folder named “Tiles”. This hierarchical directory structure (cf. Figure 72) ensures

that the exported tile files are distributed over different subfolders in order to avoid putting all

tile files into a single folder which may result in significant performance issues at least under

MS Windows operating systems.

170 3D Geodatabase for CityGML 2019

Figure 72: Example: hierarchical directory structure for export of 2x3 tiles

Export from level of detail. The Level of Detail as defined by the CityGML specification

should be used as basis information for the KML/COLLADA/glTF export. For the same city

object higher levels of detail usually contain many more geometries and these geometries are

more complex than in lower levels. For instance, a building made of 40 polygons in LoD2

may consist of 3000 polygons in LoD3. This means LoD3 based exports are a lot more

detailed than LoD2 based exports, but they also take longer to generate, are bigger in size and

therefore load more slowly in the Earth browser.

By using the drop-down list [5] a single constant LoD can be used as basis for all exports or it

can be left to the Importer/Exporter to automatically determine which the highest LoD

available for each cityobject is and then use it as the basis for the KML/COLLADA/glTF

exports.

Display as. These fields in the export dialog [6] determines what will be shown when

visualizing the exported dataset in earth browsers.

 Footprint: objects are represented by their ground surface projected onto the earth

surface. This is a pure KML export.

 Extruded: objects are represented as blocks models by extruding their footprint to

their height (calculated by using their 3D envelopes). This is a pure KML export.

 Geometry: objects are represented with fully detailed geometry information with

respect to the selected Level of Detail. It can explicitly show the different thematic

surfaces (e.g. wall and roof surfaces) by means of coloring them (textures are not

supported by KML) according to the settings in the preferences tab

(KML/COLLADA/glTF Export node, Rendering subnode). If not explicitly modeled,

thematic surfaces will be inferred for LoD1 or LoD2 based exports following a trivial

3D Geodatabase for CityGML 2019 171

logic (surfaces touching the ground – that is, having a lowest z-coordinate- will be

considered wall surfaces, all other will be considered roof surfaces), in LoD3 or LoD4

based exports surfaces not thematically modeled will be colored as wall surfaces.

 COLLADA/glTF: shows the detailed geometry in COLLADA and glTF formats

including support for textures. The Appearance/Theme combo box below allows

choosing from all possible appearance themes (as defined in the CityGML

specification [Gröger et al. 2012]) available in the currently connected 3DCityDB

instance. The list is workspace- and timestamp sensitive and will be filled on demand

when clicking on the fetch button. Default value is none, which renders no textures at

all and colors all surfaces according to the settings in the preference tab

(KML/COLLADA/glTF Export node, Rendering subnode).

Figure 73: The same building displayed as (top down and left to right) footprint, extruded, geometry,

COLLADA

Note: For Oracle, the Footprint and Extruded display forms internally use the spatial

function SDO_AGGR_UNION. This function is not allowed to be used under Oracle

10g/11g with the Locator license option even if it happens to be available. The

Importer/Exporter does not check the Oracle license option. Thus, it is up to the user to

172 3D Geodatabase for CityGML 2019

observe the Oracle license and not to use the Footprint and Extruded display forms

under Oracle 10g/11g Locator. This restriction does not hold for the Oracle Spatial

license option. Likewise, starting from Oracle 12c, SDO_AGGR_UNION is also

available for Locator.

Depending on the chosen level of detail, some display form checkboxes will become enabled

or disabled, depending on whether the level of detail offers enough information for this

display form or not. For instance, Footprint can be exported from any CityGML LoD (0 to 4),

whereas Extruded, Geometry, and COLLADA/glTF exports are possible from LoD1 upwards.

Exports will have their filename enhanced with a suffix specifying the selected display form.

This applies for both tiled and untiled exports.

With the visibility field next to each display form the user can control the KML element

<minLodPixels>, see [Wilson 2008]: measurement in screen pixels that represents the

minimum limit of the visibility range for a given <Region>. A <Region> is in the

generated tiled exports equivalent to a tile. The <maxLodPixels> value is identical to the

<minLodPixels> of the next visible display form, so that display forms are seamlessly

switched when the viewer zooms in or out. The last visible display form has a

<maxLodPixels> value of -1, that is, visible to infinite size. Visibility ranges can start at a

value of 0 (they do not have to, though). Please note that the region size in pixels depends on

the chosen tile size. Thus, if the tile size is reduced also the visibility ranges should be

reduced. Increases in steps of a third of the tile side length are recommended. An example of a

good combination for a tile size of about 250m x 250m could be: Footprint, visible from 50

pixels, Geometry, visible from 125 pixels, COLLADA/glTF, visible from 200 pixels. Some

display forms, like Extruded in this example, can be skipped. The visibility field only

becomes enabled for bounding box exports; single building exports are always visible.

Feature Types. Similar to CityGML imports and exports it is also possible to select what top-

level feature types shall be displayed in a KML/COLLADA/glTF export. With the selection

tree panel [7] it is possible to pick each category individually and also leave single categories

out, i.e.: export CityFurniture and WaterBody only, or export everything but Building and so

on. Between LoD1 and LoD4 all feature types are available. For LoD0 only those top-level

feature types offering LoD0 geometry in the CityGML 2.0 schema (Building, Waterbody,

LandUse, Transportation and GenericCityObject) are selectable, whereas the rest of the

feature class checkboxes will become automatically disabled.

Note: Support for Relief features in KML/COLLADA/glTF exports is currently limited to

the type TIN_RELIEF. Other Relief types such as MASSPOINT_RELIEF,

BREAKLINE_RELIEF, and RASTER_RELIEF are not supported currently. Also, due

to the usually wide-streched area of Relief features and the non-clipping nature of the

BoundingBox filter it is recommended to export Relief features in a single step

making use of the no tiling option and using an extensive enough BoundingBox.

As an alternative, the digital terrain model data can be divided in smaller

ReliefComponents tailored to match the tiling settings of the desired export (their

area contained in or equal to the resulting tiles). This requires altering the original

3D Geodatabase for CityGML 2019 173

data nevertheless and, as such, it must be done before the CityGML contents are

imported into the database at all.

Figure 74: Example for exported CityGML top-level features (building, bridge, tunnel, water, vegetation,

transportation etc.) displayed as KML/COLLADA

KML/COLLADA/glTF export. Having completed all settings, the KML/COLLADA/glTF

data export is triggered with the Export button at the bottom of the dialog (cf. Figure 71). If a

database connection has not been established manually beforehand, the currently selected

entry on the Database tab is used to connect to the 3D City Database. Progress information

is displayed within a separate status window. This status window also offers a Cancel button

that lets a user abort the export process. The separate steps of the export process as well as

possible error messages are reported to the console window.

After having completed the export, multiple files along with the Tiles folder will be written to

the prespecified output location. One of them is called master KML file which contains a list

of <NetworkLink> elements pointing to every exported tile files stored in the Tiles folder.

This KML file can therefore be directly opened in Google Earth for viewing and exploring the

exported KML/COLLADA models. In addition, for each selected display form (Footprint,

Extruded, Geometry, and COLLADA/glTF), a JSON formatted file called master JSON file is

created and its contents should look like the following example:

Master JSON file example:

{

 "version": "1.0.0",

 "layername": "NYC_Buildings",

 "fileextension": ".kmz",

 "displayform": "extruded",

 "minLodPixels": 140,

 "maxLodPixels": -1,

 "colnum": 29,

 "rownum": 23,

 "bbox":{

174 3D Geodatabase for CityGML 2019

 "xmin": -74.0209007,

 "xmax": -73.9707756,

 "ymin": 40.6996416,

 "ymax": 40.7295678

 }

}

As the name of each JSON parameter implies, this JSON file contains the relevant

information about the specified export settings and can hence be seen as a kind of metadata

allowing applications to interpret the contents of the exported datasets. For example, the

length and width (in WGS84) of each tile can be determined using the following formulas:

TileWidth = (bbox.xmax – bbox.xmin) / colnum

TileLength = (bbox.ymax – bbox.ymin) / rownum

With these two calculated values, applications are also able to use the following formulas to

rapidly retrieve the row and column number of the tile in which a given point lies:

ColumnNumber = floor ((X – bbox.xmin) / TileWidth)

RowNumber = floor ((Y – bbox.ymin) / TileLength)

where X and Y denote the WGS84 coordinates of the given point.

Further, if a bounding box is given, which is formed by a lower-left corner and an upper-right

corner and their row and column numbers are expressed as (R1, C1) and (R2, C2)

respectively, all those tiles that intersect with the given bounding box can be found iteratively,

as their row and column numbers must fulfil the following conditions:

𝑅1 ≤ 𝑅𝑜𝑤𝑁𝑢𝑚𝑏𝑒𝑟 ≤ 𝑅2 ∧ 𝐶1 ≤ 𝑐𝑜𝑙𝑢𝑚𝑛𝑁𝑢𝑚𝑏𝑒𝑟 ≤ 𝐶2.

 Support of GenericCityObject having any geometry types

The earlier versions of KML/COLLADA/glTF Exporter have been designed to only support

exports of surface-based geometries for all CityGML classes. Starting from version 3.0.0 of

the 3DCityDB, the KML/COLLADA/glTF Exporter has been functionally enhanced with the

support for exporting point and curve geometry types of GenricCityObject objects in

KML/KMZ format. GenricCityObject is a feature class defined within the CityGML’s

Generics module (see chapter 2.2.4.6) that allows for modeling and exchanging of 3D city

objects which are not covered by any other thematic modules of CityGML. The geometry of a

GenericCityObject can be explicitly defined in LOD0-4 using arbitrary 3D GML geometry

object (class gml:_Geometry). Thus, any complex structured objects that have point, line,

surface, or solid geometries can be geometrically represented by means of GenricCityObject

objects for every LOD. For example, the indoor routing network model, which are not defined

in the current CityGML specification, could be even though modeled using the CityGML’s

Generics module where each GenricCityObject object may represent a node or an edge of the

network model.

3D Geodatabase for CityGML 2019 175

Figure 75: Visualization of the network model of the building interior of Technical University Munich (TUM)

Depending on the chosen Level of Detail, the point and curve geometries of GenricCityObject

objects are exported, along with their surface and solid geometries, into the output

KML/KMZ file whose filename is enhanced with a suffix denoting the selected display form

(e.g. Footprint, Extruded, Geometry, or COLLADA/glTF).

 Loading exported models in Google Earth and Cesium Virtual

Globe

In order to make full use of the features and functionalities provided by Google Earth, it is

highly recommended to use the enhanced version of Google Earth – Google Earth Pro which

is available free of charge starting from January 2015. Some of the features described in this

documentation, like highlighting, can also flawlessly work in the normal Google Earth with

version 6.0.1 or higher.

Displaying a file in Google Earth can be achieved by opening it through the menu ("File",

"Open") or double-clicking on any kml or kmz file if these extensions are associated with the

program (default option at Google Earth's installation time).

Loaded files can be refreshed when generated again after loading (if for example the balloon

template file was changed) by choosing the "Revert" option in the context menu on the

sidebar. There is no need to delete and load them again or shutdown or restart the Earth

browser.

For best performance, cache options ("Tools", "Options", "Cache") should be set to their

maximum values, 1024MB for memory cache size, 2000MB for disk cache. Actual

maximums may be lower depending on the computer's hardware.

176 3D Geodatabase for CityGML 2019

Google Earth enables showing the terrain layer by default for realistic display of 3D models.

Disabling of terrain layer is only possible in Google Earth Pro. You may need to disable the

terrain layer in case that the exported models cannot be seen although shown as loaded in

Google Earth's sidebar, since they are probably buried into the ground (see chapter 5.6.3.4).

When exporting balloons into individual files (one for each object) written together into a

balloon directory access to local files and personal data must be allowed ("Tools", "Options",

"General"). Google Earth will issue a security warning that must be accepted, otherwise the

contents of the balloons (when in individual files and not as a part of the doc.kml file) will not

be displayed.

It is also possible to upload the generated KML/COLLADA/glTF files to a web server and

access them from there via internet browser with Cesium Virtual Globe (starting from

December 2015, the Google Earth Plugin is no longer supported by most modern web

browsers due to security considerations). In this case, the Cross Origin Resource Sharing

(CORS) shall be enabled on the web server to allow cross-domain AJAX requests sent from

the based-web frontend.

Note: Starting with version 7 (and at least up to version 7.1.1.1888) Google Earth has

changed the way transparent or semi-transparent surfaces are rendered. This is

especially relevant for visualizations containing highlighting surfaces (explained in

chapter 5.6.3.2). When viewing KML/COLLADA models in Google Earth it is

strongly recommended to use Google Earth (Pro) version 7 or higher and switch to the

OpenGL graphic mode for an optimal viewing experience. Changing the Graphic

Mode can be achieved by clicking on Tools, Options entry, 3D View Tab.

Figure 76: Setting the Graphics Mode in Google Earth

3D Geodatabase for CityGML 2019 177

Figure 77: KML/COLLADA models rendered with DirectX, highlighting surface borders are noticeable

everywhere

Figure 78: The same scene rendered in OpenGL mode

178 3D Geodatabase for CityGML 2019

5.6 Preferences

In addition to the settings on the Import, Export, KML/COLLADA/glTF Export and

Database tabs of the operations window, more preferences affecting the separate operations

of the Importer/Exporter are available on the Preferences tab shown below.

Figure 79: The preferences dialog.

The preferences are structured in a tree view [1] on the left side of the dialog with the

following main nodes:

 CityGML Import Settings affecting the CityGML import operation

 CityGML Export Settings affecting the CityGML export operation

 KML/COLLADA/glTF Export Settings affecting the KML/COLLADA/glTF export

 operation

 Database Database-specific settings

 General General settings affecting the entire application

Below these main nodes, further subnodes organize the preferences into separate topics.

When selecting a node in the tree view, the associated settings dialog is displayed on the right

side [2]. Changes made to the settings of the selected node are applied through the Apply

button [3]. The buttons Restore and Default allow for resetting the preferences to their

previous state or to their default values.

The preferences (including the settings on the separate operation tabs) are automatically

stored in the config file of the Importer/Exporter and are restored from this file upon program

1

2

3

3D Geodatabase for CityGML 2019 179

start. Thus, changes made to the preferences are remembered on restart. Via the Project

menu available from the menu bar of the Importer/Exporter, the preferences can optionally be

stored in or loaded from user-defined config files (cf. chapter 5.1).

 CityGML import preferences

5.6.1.1 Continuation

The Continuation preferences allow for specifying metadata that is assigned to every city

object at import time. The metadata is carried to columns of the table CITYOBJECT and is

therefore accessible in SQL queries.

Figure 80: CityGML import preferences – Continuation.

The following metadata can be set:

Metadata Description

Data lineage [1]
A string value denoting the origin of the data.

(column: LINEAGE; default value: NULL)

Reason for update [1]
A string value providing the reason for a data update.

(column: REASON_FOR_UPDATE; default value: NULL)

Updating person [2]

A string value identifying the person being responsible for importing or
updating the city object.

(column: UPDATING_PERSON; default value: name of the database user)

creationDate [3]

A timestamp value denoting the date of creation of the city object. If this
date is not available from the CityGML feature during import, it may either
be set to the import date or be inherited from the parent feature (if
available). Alternatively, the user can choose to replace all creation dates
from the input files with the import date.

(column: CREATION_DATE; default value: import date)

3

2

1

4

180 3D Geodatabase for CityGML 2019

terminationDate [4]

A timestamp value denoting the date of termination of the city object. If this
date is not available from the CityGML feature during import, it may either

be set to NULL or be inherited from the parent feature (if available).

Alternatively, the user can choose to replace all termination dates in the

input files with NULL.

 (column: TERMINATION_DATE; default value: NULL)

Table 38: Metadata stored with every city object in the table CITYOBJECT.

Note: Both creationDate and terminationDate are CityGML properties of city objects and

therefore are exported to CityGML datasets. The remaining metadata information

does not map to CityGML properties. It is therefore not exported to CityGML

datasets but is only available in the database.

5.6.1.2 gml:id handling

Globally unique object identifiers are crucial for ensuring data consistency and for enabling

data management workflows. Especially when it comes to (subsequently) updating the city

model content in the database, unique identifiers will help to quickly identify and replace

objects in the database with candidates from external datasets. Unfortunately, gml:id values

do not meet the requirement of global uniqueness since they are, per definition, optional and

only unique within the scope of a single dataset.

Figure 81: CityGML import preferences – gml:id handling.

Per default, the Importer/Exporter assumes that the gml:id values associated with the city

objects to be imported are globally unique and therefore imports them “as is” into the

database. Only in case a city object (or geometry object) lacks a gml:id, a UUID value will

be generated at import time and stored with the object.

This default behavior can be overridden with this preferences dialog in order to let the

Importer/Exporter replace all gml:id values in the input file(s) with generated UUID values.

3D Geodatabase for CityGML 2019 181

The user may choose a prefix for the gml:id value. Use this option with caution. The original

gml:id value may optionally be stored as external reference to not lose this information.

In addition to the gml:id, the 3DCityDB allows for storing a second GMLID_CODESPACE

metadata value. The idea is that the compound value of gml:id and GMLID_CODESPACE

is globally unique. The user can choose to use the file name of the CityGML import file, its

complete path or a user-defined string as GMLID_CODESPACE. Per default, the

Importer/Exporter does not import a GMLID_CODESPACE value though.

Note: The Importer/Exporter internally only relies on the gml:id value to identify

objects, for example, when resolving XLink references. The GMLID_CODESPACE

value therefore supports user-defined data management processes in the first place.

5.6.1.3 Address

CityGML relies upon the OASIS Extensible Address Language (xAL) standard for the

representation and exchange of address information. xAL provides a flexible and generic

framework for encoding address data according to arbitrary address schemes. The columns of

the ADDRESS table of the 3D City Database however only map the most common fields in

address records (cf. chapter 2.3). Moreover, the Importer/Exporter currently does not support

arbitrary xAL fragments but is tailored to the parsing of following two xAL templates that are

taken from the CityGML specification.
<bldg:Building>

 …

 <bldg:address>

 <Address>

 <xalAddress>

 <!-- Bussardweg 7, 76356 Weingarten, Germany -->

 <xAL:AddressDetails>

 <xAL:Country>

 <xAL:CountryName>Germany</xAL:CountryName>

 <xAL:Locality Type="City">

 <xAL:LocalityName>Weingarten</xAL:LocalityName>

 <xAL:Thoroughfare Type="Street">

 <xAL:ThoroughfareNumber>7</xAL:ThoroughfareNumber>

 <xAL:ThoroughfareName>Bussardweg</xAL:ThoroughfareName>

 </xAL:Thoroughfare>

 <xAL:PostalCode>

 <xAL:PostalCodeNumber>76356</xAL:PostalCodeNumber>

 </xAL:PostalCode>

 </xAL:Locality>

 </xAL:Country>

 </xAL:AddressDetails>

 </xalAddress>

 </Address>

 </bldg:address>

</bldg:Building>

<bldg:Building>

 …

 <bldg:address>

 <Address>

 <xalAddress>

 <!-- 46 Brynmaer Road Battersea LONDON, SW11 4EW United Kingdom -->

 <xAL:AddressDetails>

 <xAL:Country>

 <xAL:CountryName>United Kingdom</xAL:CountryName>

 <xAL:Locality Type="City">

 <xAL:LocalityName>LONDON</xAL:LocalityName>

182 3D Geodatabase for CityGML 2019

 <xAL:DependentLocality Type="District">

 <xAL:DependentLocalityName>Battersea</xAL:DependentLocalityName>

 <xAL:Thoroughfare>

 <xAL:ThoroughfareNumber>46</xAL:ThoroughfareNumber>

 <xAL:ThoroughfareName>Brynmaer Road</xAL:ThoroughfareName>

 </xAL:Thoroughfare>

 </xAL:DependentLocality>

 <xAL:PostalCode>

 <xAL:PostalCodeNumber>SW11 4EW</xAL:PostalCodeNumber>

 </xAL:PostalCode>

 </xAL:Locality>

 </xAL:Country>

 </xAL:AddressDetails>

 </xalAddress>

 </Address>

 </bldg:address>

</bldg:Building>

Figure 82: xAL fragments supported by the Importer/Exporter.

If xAL address information in a CityGML instance document does not comply with one of the

templates (e.g., because of additional or completely different entries), the address information

will only partially be stored in the database (if at all). In order to not lose any original address

information, the entire <xal:AddressDetail> XML fragment can be imported “as is”

from the input CityGML file and stored in the XAL_SOURCE column of the ADDRESS table

in the 3D City Database.

For this purpose, simply check the Import original <xal:AddressDetail> XML option (this is

the default value). Note that the import of the XML fragment does not affect the filling of the

remaining columns of the ADDRESS table (STREET, HOUSE_NUMBER, etc.) from the xAL

address information.

Figure 83: CityGML import preferences – Address.

The symmetrical setting for CityGML exports (i.e., recovering the xAL fragment from

XAL_SOURCE) is explained in chapter 5.6.2.4.

3D Geodatabase for CityGML 2019 183

5.6.1.4 Appearance

The Appearance preference settings define how appearance information (i.e., materials and

textures associated with the observable surfaces of a city object) is processed at import time.

Figure 84: CityGML import preferences – Appearance.

Per default, all appearance information as well as all related texture image files are loaded

into the 3D City Database [1]. The Importer/Exporter will work on both image files located in

a relative path to the CityGML dataset and image files referenced by a valid URL. The latter

might require network access. Alternatively, a user may choose to only consider the

appearance information but to not load the texture image files. As a third option, appearance

information can be completely skipped during import [1].

Prior to version 1.0 of the CityGML standard, material and texture information of surface

objects was modelled using the TexturedSurface concept. This concept was however

replaced by the Appearance module in CityGML 1.0 and therefore is marked deprecated.

Although the CityGML specification disadvises the use of the TexturedSurface concept,

it is still allowed even in CityGML 2.0 datasets. The Importer/Exporter can parse and

interpret TexturedSurface information but will automatically convert this information

losslessly into the Appearance module. Since TextureSurface information is not

organized into themes but a theme is mandatory in the context of the Appearance module,

the user has to define a theme that shall be used in the conversion process [2]. The default

value is rgbTexture.

5.6.1.5 Geometry

Before importing the city objects into the 3D City Database, the Importer/Exporter can apply

an affine coordinate transformation to all geometry objects. Per default, this option is disabled

though.

1

2

184 3D Geodatabase for CityGML 2019

Figure 85: CityGML import preferences – Geometry.

An affine transformation is any transformation that preserves collinearity (i.e., points initially

lying on a line still lie on a line after transformation) and ratios of distances (e.g., the midpoint

of a line segment remains the midpoint after transformation). It will move lines into lines,

polylines into polylines and polygons into polygons while preserving all their intersection

properties. Geometric contraction, expansion, dilation, reflection, rotation, skewing, similarity

transformations, spiral similarities, and translation are all affine transformations, as are their

combinations.

The affine transformation is defined as the result of the multiplication of the original

coordinate vectors by a matrix plus the addition of a translation vector.

�⃗�′ = 𝐴 ∙ �⃗� + �⃗⃗�

In matrix form using homogenous coordinates:

[
𝑥′

𝑦′

𝑧′

] = [

𝑚11 𝑚12 𝑚13 𝑚14

𝑚21 𝑚22 𝑚23 𝑚24

𝑚31 𝑚32 𝑚33 𝑚34

] ∙ [

𝑥
𝑦
𝑧
1

]

The coefficients of this matrix and translation vector can be entered in this preferences dialog

(cf. Figure 85). The first three columns define any linear transformation; the fourth column

contains the translation vector. The affine transformation does neither affect the

dimensionality nor the associated reference system of the geometry object, but only changes

its coordinate values. It is applied the same to all coordinates in all objects in the original

CityGML file. This also includes all matrixes in CityGML like the 2x2 matrixes of

GeoreferencedTextures, the 3x4 transformation matrixes of TexCoordGen elements

used for texture mapping and the 4x4 transformation matrixes for ImplicitGeometries.

Note: An affine transformation cannot be undone or reversed after the import using the

Importer/Exporter.

3D Geodatabase for CityGML 2019 185

Two elementary affine transformations are predefined: 1) Identity matrix (leave all geometry

coordinates unchanged), which serves as an explanatory example of how values in the matrix

should be set, and 2) Swap X/Y, which exchanges the values of x and y coordinates in all

geometries (and thus performs a 90 degree rotation around the z axis). The latter is very

helpful in correcting CityGML datasets that have northing and easting values in wrong order.

Example: For an ordinary translation of all city objects by 100 meters along the x-axis and 50

meters along the y-axis (assuming all coordinate units are given in meters), the identity matrix

must be applied together with the translation values set as coefficients in the translation

vector:

𝑝′ = [
1 0 0 100
0 1 0 50
0 0 1 0

] ∙ �⃗�

5.6.1.6 Indexes

In addition to the Database tab on the operations window, which lets you enable and

disable spatial and normal indexes in the 3D City Database manually (cf. chapter 5.2.2), with

this preference settings a default index strategy for database imports can be determined.

Figure 86: CityGML import preferences – Indexes.

The dialog differentiates between settings for spatial indexes [1] and normal indexes [2] but

offers the same options for each index type.

The default setting is to not change the status (i.e., either enabled or disabled) of the indexes.

This default behavior can be changed so that indexes are always disabled before starting and

import process. The user can choose whether the indexes shall be automatically reactivated

after the import has been finished.

Note: All indexes are enabled after setting up a new instance of 3D City Database.

Note: It is strongly recommended to deactivate the spatial indexes before running a

CityGML import on a big amount of data and to reactive the spatial indexes

1

2

186 3D Geodatabase for CityGML 2019

afterwards. This way the import will typically be a lot faster than with spatial indexes

enabled. The situation may be different if only a small dataset is to be imported.

Deactivating normal indexes should however never be required.

Note: Activating and deactivating indexes can take a long time, especially if the database

fill level is high. Note that the operation cannot be aborted by the user since this

could result in an inconsistent database state.

5.6.1.7 XML validation

On the Import tab of the operations window, the CityGML input files to be imported into

the database can be manually validated against the official CityGML XML Schemas. This

preference dialog lets a user choose to perform XML validation automatically with every

database import.

Figure 87: CityGML import preferences – XML validation.

In general, it is strongly recommended to ensure (either manually or automatically) that the

input files are valid with respect to the CityGML XML schemas. Invalid files might cause the

import procedure to behave unexpectedly or even to abort abnormally.

If XML validation is chosen to be performed automatically during imports, then every invalid

top-level feature will be discarded from the import. Nevertheless, the import procedure will

continue to work on the remaining features in the input file(s).

Validation errors are printed to the console window. Often, error messages quickly become

lengthy and confusing. To keep the console output low, the user can choose to only report the

first validation error per top-level feature and to suppress all subsequent error messages.

Note: The XML validation in general does not require internet access since the CityGML

XML schemas are packaged with the Importer / Exporter. These internal copies of

the official XML schemas will be used to check CityGML XML content in input

files. The user cannot change this behavior. External XML schemas will only be

3D Geodatabase for CityGML 2019 187

considered in case of unknown XML content, which might require internet access.

Precisely, the following rules apply:

 If an XML element’s namespace is part of the official CityGML 2.0 or 1.0

standard, it will be validated against the internal copies of the official CityGML

2.0 or 1.0 schemas (no internet access needed).

 If the element’s namespace is unknown, the element will be validated against the

schema pointed to by the xsi:schemaLocation value on the root element or the

element itself. This is necessary when, for instance, the input document contains

XML content from a CityGML Application Domain Extension (ADE). Note that

loading the schema might require internet access.

 If the element’s namespace is unknown and the xsi:schemaLocation value

(provided either on the root element or the element itself) is empty, validation

will fail with a hint to the element and the missing schema document.

5.6.1.8 XSL Transformation

This preference is used to apply changes to the CityGML input data before it is imported into

the database using XSL transformations. Simply check the Apply XSLT stylesheets option and

point to an XSLT stylesheet in your local file system using the Browse button. The stylesheet

will be automatically considered by the import process to transform the CityGML data.

Figure 88: CityGML import preferences – XSL transformation.

By clicking the + and - buttons, more than one XSLT stylesheet can be fed to the importer.

The stylesheets are executed in the given order, with the output of a stylesheet being the input

for its direct successor. The Importer/Exporter is shipped with example XSLT stylesheets in

subfolders below templates/ XSLTransformations in the installation directory.

Note: To be able to handle arbitrarily large input files, the importer chunks every CityGML

input file into top-level features, which are then imported into the database. Each

188 3D Geodatabase for CityGML 2019

XSLT stylesheet will hence just work on individual top-level features but not on the

entire file.

Note: The output of each XSLT stylesheet must again be a valid CityGML structure.

Note: Only stylesheets written in the XSLT language version 1.0 are supported.

5.6.1.9 Import log

A CityGML import process not necessarily works on all CityGML features within the

provided input file(s). An obvious reason for this is that spatial or thematic filters that

naturally narrow down the set of imported features. Also, in case the import procedure aborts

early (either requested by the user or caused by severe import errors), not all input features

might have been processed. To understand which top-level features were actually loaded into

the database during an import session, the user can choose to let the Importer/Exporter create

an import log.

Figure 89: CityGML import preferences – Import log.

Simply enable the checkbox on this settings dialog to activate import logs (disabled per

default). You additionally must provide a folder where the import log files will be created in.

Either type the folder name manually or use the Browse button to open a file selection dialog.

The application proposes to use a folder within your user’s home directory, but this proposal

can be overridden.

To easily relate import logs to different 3D City Database instances managed on the

Database tab, the Importer/Exporter creates one subfolder for each connection entry below

the folder provided in the settings dialog. The description text of the connection entry (cf.

chapter 5.2.1) is used as folder name. Within that subfolder, a separate log file is created for

every input file during an import to that 3D City Database connection. The filename includes

the date and time of the import session according to following pattern:

imported-features-yyyy_MM_dd-HH_mm_ss_SSS.log

3D Geodatabase for CityGML 2019 189

The import log is a simple CSV file with one record (line) per imported top-level feature. The

following figure shows an example.

Figure 90: Example import log.

The first four lines of the import log contain metadata about the version of the

Import/Exporter that was used for the import, the absolute path to the CityGML input file, the

database connection string, and the timestamp of the import. Each line starts with # character

in order to mark its content as metadata.

The first line below the metadata block provides a header for the fields of each record. The

field names are FEATURE_TYPE, CITYOBJECT_ID, and GML_ID_IN_FILE. A single

comma separates the fields. The records follow the header line. The meaning of the fields is

as follows:

 FEATURE_TYPE An uppercase string representing the type of the imported

 CityGML feature.

 CITYOBJECT_ID The value of the ID column (primary key) of the

 CITYOBJECT table where the feature was inserted.

 GML_ID_IN_FILE The original gml:id value of the feature in the input

 file (might differ in database due to import settings).

The last line of each import log is a footer that contains metadata about whether the import

was successfully finished or aborted.

5.6.1.10 Resources

Multithreading settings. The software architecture of the Importer/Exporter is based on

multithreading. Put simply, the different tasks of an import process are carried out by separate

threads. The decoupling of compute bound from I/O bound tasks and their parallel non-

blocking processing usually leads to an increase of the overall application performance. For

example, threads waiting for database response do not block threads parsing the input

document or processing the CityGML input features. In a multi-core environment, threads can

even be executed simultaneously on multiple CPUs or cores.

190 3D Geodatabase for CityGML 2019

Figure 91: CityGML import preferences – Resources.

The Resource settings allow for controlling the minimum and maximum number of

concurrent threads during import [1]. Make sure to enter reasonable values depending on your

hardware configuration. By default, the maximum number is set to the number of available

CPUs/cores times two. Before starting the import process, the minimum number of threads is

created. Further threads up to the specified maximum number are only created if necessary.

Note: A higher number of threads does not necessarily result in a better performance. In

contrast, a too high number of active threads faces disadvantages such as thread life-

cycle overhead and resource thrashing. Also, note that each thread requires its own

physical connection to the database. Therefore, your database must be ready to

handle enough parallel physical connections. Ask you database administrator for

assistance.

Cache settings. The Importer/Exporter employs strategies for parsing CityGML datasets of

arbitrary file size and for resolving XLink references. A naive approach for XLink resolving

would read the entire CityGML dataset into main memory. However, CityGML datasets

quickly become too big to fit into main memory. For this reason, the import process follows a

two-phase strategy: In a first run, features are written to the database neglecting references to

remote objects. If a feature contains an XLink though, any context information about the

XLink is written to temporary database tables. This information comprises, for instance, the

2

1

3

4

3D Geodatabase for CityGML 2019 191

table name and primary key of the referencing feature/geometry instance as well as the

gml:id of the target object.

In addition, while parsing the document, the import process keeps track of every encountered

gml:id as well as the table name and primary key of the corresponding object in database. It

is important to record this information because a priori it cannot be predicted whether or not a

gml:id is referenced by an XLink from somewhere else in the document. In order to ensure

fast access, the information is cached in memory. If the maximum cache size is reached, the

cache is paged to temporary database tables to prevent memory overflows. In a second run,

the temporary tables containing the context information about XLinks are revisited and

queried. Since the entire CityGML document has been processed at this point in time, valid

references can be resolved and processed accordingly. With the help of the gml:id cache,

the referenced objects can be quickly identified within the database.

The caching and paging behaviour for gml:id values can be influenced via the Resource

preferences [3]. The dialog lets a user enter the maximum number of gml:id values to be

held in main memory (default: 200,000 entries), the percentage of entries that will be written

to the database if the cache limit is reached (page factor, default: 85%), as well as the number

of parallel temporary tables used for paging (table partitions, default: 10). The

Importer/Exporter employs different caches for gml:id values of geometries and features

[3]. Moreover, a third cache is used for handling texture atlases and offers similar settings [4].

Batch settings. In order to optimize database response times, multiple database statements are

submitted to the database in a single request (batch processing). This allows for an efficient

data processing on the database side. The user can influence the number of SQL statements in

one batch through the settings dialog [2]. The dialog differentiates between batch sizes for

CityGML features (default: 20) and gml:id caches respectively temporary XLink

information (default: 1000 each).

Note: All database operations within one batch are buffered in main memory before being

submitted to the database. Thus, the Importer/Exporter might run out of memory if

the batch size is too high. After a batch is submitted, the transaction is committed.

192 3D Geodatabase for CityGML 2019

 CityGML export preferences

5.6.2.1 CityGML version

The CityGML version preference settings let you choose the target CityGML version

when exporting 3D city model content from the database to a CityGML dataset.

Figure 92: CityGML export preferences – CityGML version.

The default value is CityGML version 2.0.0, which is the current version of the OGC

CityGML Encoding Standard. In addition, also the preceding version 1.0.0 is still supported.

Note: CityGML 2.0.0 introduces new feature types such as bridges and tunnels that are not

available in CityGML 1.0.0. If the 3D City Database instance contains features of

these types, they will be neglected in an export to CityGML version 1.0.0 simply

because they cannot be encoded in this version.

5.6.2.2 Tiling options

The Importer/Exporter allows for applying a spatial bounding box filter to CityGML exports

on the Export tab of the operations window. To trigger a tiled export, a user can

additionally check the Tiling option and provide the number of rows of columns into which

the bounding box shall be evenly split (cf. chapter 5.4).

When tiling is enabled, the export operation iterates over all tiles within the bounding box and

exports the city objects on each tile. Every tile is exported to its own file within a separate

subfolder of the export directory. With the Tiling options preferences, the names of the

subfolders and tile files can be adapted as shown in Figure 93.

Each subfolder name consists of a prefix and a tile-specific suffix [1]. The suffix may contain

the row and column number of the tile exported or a combination of the tile’s minimum /

maximum coordinates. If a coordinate suffix is chosen, the coordinates will be given in the

reference system specified for the CityGML export (cf. chapter 5.4; default value is the

internal SRS of the 3D City Database instance), even if the coordinates of the bounding box

filter are given in another user-defined SRS. This makes it easy to relate objects to tiles since

the coordinates of the objects contained in the tile are exported in the same reference system.

3D Geodatabase for CityGML 2019 193

The filename of the CityGML instance document created in each subfolder corresponds to the

one defined on the Export tab. However, a tile-specific suffix may be appended [1].

Figure 93: CityGML export preferences – Tiling options.

For further traceability, it is possible to attach a generic string attribute called TILE to each

exported CityGML feature, indicating which tile it belongs to [2]. The options for the value of

the generic attribute are the same as for the suffix of the tile subfolder.

5.6.2.3 CityObjectGroup

When exporting city object groups, also group members are written to the target CityGML

dataset (cf. chapter 5.4). Group members are always given by reference (i.e., the grp:member

property uses an xlink:href reference to point to the group member in the dataset) and only

group members satisfying the export filter settings are considered.

Figure 94: CityGML export preferences – CityObjectGroup.

1

2

194 3D Geodatabase for CityGML 2019

The default behavior can be changed using this preference dialog. When checking the option

Export all group members as xlink:href references, then an xlink:href reference is created for

each group member defined in the database, no matter whether this group member is also

exported or skipped due to filter settings. Thus, the consistency of the xlink:href references is

not checked, and some references might not be resolvable in the final dataset. The benefit of

skipping this check is that the performance of the CityGML export is increased.

5.6.2.4 Address

Like the import of xAL address information (see chapter 5.6.1.3), the user can choose how

address information should be exported to a target CityGML dataset. The available options of

the Address export preferences are shown in the figure below.

Figure 95: CityGML export preferences – Address.

Address information is exported form the data values in the ADDRESS table of the 3D City

Database instance. As discussed in chapter 5.6.1.3, these values may however lack data

present in the original xAL fragment or they may even contain no data at all when the address

information differs too much from the supported xAL templates (cf. Figure 82). In such cases,

using the original <xal:AddressDetail> element stored in the XAL_SOURCE column is

the only means to achieve a lossless reconstruction of the initial address data.

Since importing the original <xal:AddressDetail> fragment into XAL_SOURCE does

not hinder the population of the remaining columns of the ADDRESS table (STREET,

HOUSE_NUMBER, etc.), there are two possible ways to reconstruct the address contents when

exporting from the 3D City Database.

1) The default option is to build the xAL address from the columns of the ADDRESS

table without considering the XAL_SOURCE column. In this case, the XML encoding

of the xAL address follows the first template as shown Figure 82.

2) Optionally, the xAL fragment is taken “as is” from the XAL_SOURCE column and

inserted literally into the target CityGML document. This way there will be no loss of

information and the address encoding will be identical to the original source datasets.

3D Geodatabase for CityGML 2019 195

Obviously, this option requires that the XAL_SOURCE column has been populated

during import (chapter 5.6.1.3).

Both options are mutually exclusive, but one can be used as a fallback alternative to the other

if the first chosen renders no results.

5.6.2.5 Appearance

The Appearance export preferences are like the settings available for importing CityGML

(cf. chapter 5.6.1.4).

Figure 96: CityGML export preferences – Appearance.

Per default, both appearance information and texture image files associated with the city

objects in the 3D City Database are exported [1]. Alternatively, the user can choose to only

export the appearance information without storing the texture files or even to not export

appearances at all.

When exporting texture files, two additional options Overwrite existing texture files and

Generate unique texture filenames influence the way in which texture files are written to the

file system [1].

1) Overwrite existing texture files

Texture files are stored in a separate folder of the file system. Before exporting a

texture image file into this folder, the Importer/Exporter can check whether a file of

the same filename already exists in this folder. In this case, the existing file will be

kept if this option is not enabled. Otherwise, and per default, there is no check and a

texture file of the same name will be overwritten (if it exists).

2) Generate unique texture filenames

Often filenames for texture images are automatically created from a naming scheme

involving some counter (e.g., a prefix “tex” followed by a number incremented by 1

for each new image). It thus can happen that two city objects within the same or

different instance documents are assigned a texture image file of the same name but

with different content (e.g., if the texture files are distributed over several folders). In

1

2

196 3D Geodatabase for CityGML 2019

the 3D City Database, texture images are stored in separate records and thus duplicate

filenames are not an issue. When exporting to CityGML however, two texture files of

the same name might be written to the same target folder, in which case one is

replaced with the other. This will obviously lead to false visualizations and issues in

workflows consuming the exported CityGML data. For this reason, checking this

option (default) will force the export process to generate unique filenames for each

texture file based on the primary key value of the TEX_IMAGE table. Therefore, the

filename even keeps stable amongst several exports from the 3D City Database.

The location where to store the texture files can be defined by the user [2]. The default option

is to pick a folder below the export directory and thus relative to the target CityGML file. The

default folder name is “appearance”. Instead of a local path, also an absolute path can be

provided. In this case, the same folder will be used in subsequent exports from the 3D City

Database.

When appearances are chosen to be exported but the Do not store texture files option [1] is

enabled, then appearance information is generated for the city objects in the CityGML dataset,

but the texture files are not stored in the file system. However, since the texture path is part of

the appearance information, the directory settings [2] and whether to generate unique texture

filenames [1] still has an impact on the generated appearance information. The Do not store

texture files option is useful, for example, if the texture files have already been exported to an

absolute directory in a previous run of the export operation.

Especially when using Windows, placing a large number of files into the same folder might

lead to severe time lags when trying to access files in this folder or to write new files to this

folder. This might negatively affect the performance for large exports. For this reason, the

Importer/Exporter can automatically distribute the texture files over additional subfolders that

are automatically created. Simply check the option Automatically place texture files in

additional subfolders and provide the number of subfolders to be used.

5.6.2.6 XLinks

Both the 3D City Database and the Importer/Exporter are capable of handling XLinks. If the

CityGML input document that is imported into the 3D City Database contains XLink

references to features and/or geometries, then this information is kept in the database in order

to be able to reconstruct the XLinks upon database export. This is also the default behavior.

Depending on the target application that consumes the exported CityGML dataset, this default

behavior may be disadvantageous, especially if the target application cannot follow and

resolve XLink references. In such cases, the XLinks preference settings let a user change the

default behavior so that the referenced objects are exported by value rather than by reference.

Put differently, instead of an XLink reference, a copy of the original feature or geometry is

placed into the CityGML dataset. This necessarily requires that the gml:id of the copy is

different from the gml:id of the original object because identical gml:id values are not

allowed in the same dataset. The Importer/Exporter takes care of this issue and creates new

gml:id values for the copies based on UUID values.

3D Geodatabase for CityGML 2019 197

Figure 97: CityGML export preferences – XLinks.

The user can define the behavior for exporting XLinks differently for features [1] and

geometries [2]. The settings allow to provide a prefix string that will be used when creating

new gml:id values (default: “UUID_”). In addition, the original gml:id may be

appended to the newly created one. Whereas these settings are available for both features and

geometries, the user can additionally choose to create a CityGML

<ExternalReference> element for features that carries the original gml:id value and

to attach this external reference as attribute to the copied feature.

5.6.2.7 XSL Transformation

As available for CityGML imports, you can apply XSLT transformations during the export

process to change the resulting CityGML output data. Simply check the Apply XSLT

stylesheets option and point to an XSLT stylesheet in your local file system using the Browse

button. The stylesheet will be automatically considered by the export process to transform the

CityGML data before it is written to a file.

Figure 98: CityGML export preferences – XSL transformation.

1

2

198 3D Geodatabase for CityGML 2019

By clicking the + and - buttons, more than one XSLT stylesheet can be fed to the exporter.

The stylesheets are executed in the given order, with the output of a stylesheet being the input

for its direct successor. The Importer/Exporter is shipped with example XSLT stylesheets in

subfolders below templates/ XSLTransformations in the installation directory.

Note: To be able to handle arbitrarily large exports, the export process reads single top-

level features from the database, which are then written to the target file. Each XSLT

stylesheet will thus just work on individual top-level features but not on the entire

file.

Note: The output of each XSLT stylesheet must again be a valid CityGML structure.

Note: Only stylesheets written in the XSLT language version 1.0 are supported.

5.6.2.8 Resources

Just like with CityGML imports, the export process is implemented based on multithreaded

data processing in order to increase the overall application performance. Likewise, in order to

reconstruct XLinks during exports (cf. chapter 5.6.2.6), the export process also needs to keep

track of each and every gml:id of exported features and geometry objects. For fast access,

the gml:id values are kept in main memory and are only paged to temporary database tables

in case the predefined cache size limit is reached.

Figure 99: CityGML export preferences – Resources.

The Resource preferences allow for setting the number of concurrent threads to be used in

the export process and for defining the sizes and page factors of the gml:id caches for

features and geometries. The meaning of the values is identical to the Resource preferences

for CityGML imports. So please refer to chapter 5.6.1.10 for more details.

3D Geodatabase for CityGML 2019 199

 KML/COLLADA/glTF export preferences

The preferences tab contains four subnodes – General, Rendering, Balloon, and

Altitude/Terrain – make customization of these exports possible. These settings will be

explained in the following sections in details.

5.6.3.1 General Preferences

Some common features of the exported files, especially those related to tiling options, can be

set under the preferences tab, node KML/COLLADA/glTF Export, subnode General.

Figure 100: General settings for the KML/COLLADA/glTF export.

Create glTF model

In addition to COLLADA models, the Importer/Exporter can also create glTF models for

efficient loading and rendering of 3D contents on WebGL-enabled web browsers. If the

“Create glTF model” option is activated, the Importer/Exporter requires an open source tool

called COLLADA2glTF4 to convert the exported COLLADA models to glTF models. The

COLLADA2glTF tool is available for Windows, Linux, and Mac OS X and has been installed

together with the Importer/Exporter and located in the subfolder contribs/collada2gltf of the

installation directory. Per default, the relative path (depending on the operating system in use)

4 https://github.com/KhronosGroup/COLLADA2GLTF/wiki

200 3D Geodatabase for CityGML 2019

of the COLLADA2glTF tool is proposed in the Path of the COLLADA2glTF tool text field

whose value will be used by the Importer/Exporter to run the target executable file. Thus, if

you want to use another version of the COLLADA2glTF tool, its absolute path has to be

manually specified using, for example, the Browse button to open a file selection dialog.

Starting with the Importer/Exporter version 4.0.0 however, version 2.1.0 or later of the

COLLADA2glTF tool is required in order to enable support for both glTF version 1.0 and

2.0. The pre-installed COLLADA2glTF binaries come already in version 2.1.3. It is also

possible to just export glTF models without COLLADA models by activating the Do not

create COLLADA (.dae) files checkbox.

When exporting a textured city object in glTF, its texture images can either be encoded in the

Base64 format and embedded into the glTF file, or saved as separate image files in the same

directory as the glTF file having references to them. This can be controlled by the setting

Embed textures in glTF (.gltf) files. In fact, both options have their pros and cons: the glTF

file without embedded texture images allows client applications to realize an incremental

loading effect which may give a better user experience, since the geometry contents and

texture images can be loaded and rendered consecutively. However, this will result in a large

amount of AJAX requests which might possibly impair the overall visualization performance

especially when a large number of city objects are loaded simultaneously. This issue can be

avoided by choosing the way of embedding the texture images into the glTF file. However,

loading of the geometries and textures of a city object must be performed within one AJAX

request that may slightly slow down the speed of the visualization of individual city object.

Note: The exported glTF file can be further converted to the so-called binary glTF file

which is a binary container for glTF models and allows for faster loading and

processing 3D objects. However, this conversion process is currently not yet

supported by the KML/COLLADA/glTF Exporter and therefore needs to be carried

out later using third party tools which can be found on the

https://github.com/KhronosGroup/glTF website.

Export in kmz format

Determines in which format single files and tiled exports should be written: kmz when

selected, kml when not. Whatever format is chosen, the main file (so called master file,

pointing to all others) will always be a kml file, all other files will comply with this setting.

Tests have shown shorter loading times (in Google Earth) for the kml format (as opposed to

kmz) when loading from the local hard disk. The Earth Browser's stability also seems to

improve when using the uncompressed format. On the other hand, when loading files from a

server kmz reduces the amount of requests considerably, thus increasing performance. Kmz is

also recommended for a better overview since kml exports may lead to a large number of

directories and files.

The Export in kmz format and Create glTF model options are mutually exclusive. A warning

message will be displayed when the user trys to choose the both.

Show bounding box borders

https://github.com/KhronosGroup/glTF

3D Geodatabase for CityGML 2019 201

When exporting a region of interest via the bounding box option in the

KML/COLLADA/glTF Export tab, this checkbox specifies whether the borders of the whole

bounding box will be shown or not. The frame of the bounding box is four times thicker than

the borders of any single tile in a tiled export.

Show tile borders

Specifies whether the borders of the single tiles in a tiled export will be shown or not.

Tile side length for automatic tiling

Applies only to automatically tiled exports and sets the approximate square size of the tiles.

Since the Bounding Box settings in the KML/COLLADA/glTF Export tab are the determining

factor for the area to be exported and have priority over this setting, the resulting tiles may not

be perfectly square or have exactly the side length fed into this field.

Each CityObject in an own region

The visibility of the objects exported can be further fine-tuned by this option. While the

visibility settings on the main KML/COLLADA/glTF Export tab apply to the whole area (no

tiling) or to each tile (automatic, manual) being exported, this checkbox allows to individually

define a KML <Region> for every single city object. The limits of the object’s region are

those of the object’s CityGML Envelope.

Note: This setting only takes effect when if the export KML/KMZ files are opened with

Google Earth (Pro). The Cesium-based 3D web client will silently ignore this setting.

Following the KML Specification [Wilson 2008], each KML <Region> is defined inside a

KML <NetworkLink> and has an associated KML<Link> pointing to a file. This implies

when this option is chosen a subfolder is created for each object exported, identified by the

object’s gmlId. The object’s subfolder will contain any KML/COLLADA/glTF files needed

for the visualization of the object in the Earth browser. This folder structure (which can

contain a large number of subfolders) is required for the KML <Region> visibility

mechanism to work.

When active, the parameters affecting the visibility of the object’s KML <Region> can be

set through the following related fields.

The field visible from determines from which size on screen the object’s KML <Region>

becomes visible, regardless of the visibility value of the containing tile, if any. Since this

value is the same for every single object and they have all different envelope sizes a good

average value should be chosen.

The field view refresh mode specifies how the KML <Link> corresponding to the KML

<Region> is refreshed when the geographic view changes. May be one of the following:

 never - ignore changes in the geographic view.

 onRequest - refresh the content of the KML <Region> only when the user explicitly

requests it.

202 3D Geodatabase for CityGML 2019

 onStop - refresh the content of the KML <Region> n seconds after movement stops,

where n is specified in the field view refresh time.

 onRegion - refresh the content of the KML <Region> when it becomes active.

As stated above, the field view refresh time specifies how many seconds after movement stops

the content of the KML <Region> must be refreshed. This field is only active and its value

is only applied when view refresh mode is onStop.

Write JSON file

After exporting some cityobjects in KML/COLLADA/glTF you may need to include them

into websites or somehow embed them into HTML. When working with tiled exports

referring to a specific object inside the KML/COLLADA/glTF files can become a hard task if

the contents are loaded dynamically into the page. It is impossible to tell beforehand which

tile contains which object. This problem can be solved by using a JSON file that is

automatically generated when this checkbox is selected.

In the resulting JSON file each exported object is listed, identified by its gmlId acting as a key

and some additional information is provided: the envelope coordinates in CRS WGS84 and

the tile, identified by row and column, the object belongs to. For untiled exports the tile’s row

and column values are constantly 0.

This JSON file has the same name as the so-called master file and is located in the same

folder. Its contents can be used for indexed search of any object in the whole

KML/COLLADA/glTF export.

JSON file example:
{

 "BLDG_0003000b0013fe1f": {

 "envelope": [13.411962, 52.51966, 13.41277, 52.520091],

 "tile": [1, 1]},

[…]

 "BLDG_00030009007f8007": {

 "envelope": [13.406815, 52.51559, 13.40714, 52.51578],

 "tile": [0, 0]}

}

The JSON file can automatically be turned into JSONP (JSON with padding) by means of

adding a function call around the JSON contents. JSONP provides a method to request data

from a server in a different domain, something typically forbidden by web browsers since it is

considered a cross-site-scripting attack (XSS). Thanks to this minimal addition, the JSON file

contents can be more easily embedded into webpages or interpreted by web kits without

breaking any rules. The function call name to be added to the original JSON contents is

arbitrary and must only be entered in the callback method name field.

Note: Another solution for overcoming the restriction on making cross-domain requests is

to make use of the Cross-Origin Resource Sharing (CORS) mechanism by enabling

the web server to include additional HTTP headers in the response that allows web

browsers to access the requested data. When working with the 3DCityDB-Web-Map-

3D Geodatabase for CityGML 2019 203

Client, it is required that the web server storing the KML/COLLADA/glTF datasets

must be CORS-enabled. In this case, there is no need anymore to use this JSONP

solution and the option of type JSONP should be deactivated.

204 3D Geodatabase for CityGML 2019

5.6.3.2 Rendering Preferences

Most aspects regarding the look of the KML/COLLADA/glTF exports when visualized in

virtual globes like Google Earth and Cesium can be customized under the preferences tab,

node KML/COLLADA/glTF Export, subnode Rendering. Each of the top-level feature

categories has its own Rendering settings. For the sake of clarity the most complex Rendering

settings for Buildings will be explained here as an example. Settings for all other top-level

features are either identical or simpler. An exceptional case is GenricCityObject which can be

exported into point or line geometries, and the corresponding settings will be explained at the

end of this section.

Figure 101: Rendering settings for the KML/COLLADA/glTF Building export.

3D Geodatabase for CityGML 2019 205

All settings in this menu are grouped according to the display form they relate to.

Footprint and extruded display options

In this section the fill and line colors can be selected. Additionally, it can be chosen whether

the displayed objects should be highlighted when being run over with the mouse or not.

Highlighting colors can only be set when the highlighting option is enabled. The alpha value

affects the transparency of all colors equally: 0 results in transparent (invisible) colors, 255 in

completely opaque ones. A click on any color box opens a color choice dialog.

As defined in the CityGML specification [Gröger et al. 2012] CityGML version 2.0.0 allows

LoD0 representation (footprint and roofprint representations) for buildings and building parts.

If LoD0 in the Level of Export setting on the main KML/COLLADA/glTF Export tab is

selected, there are three options available for LoD0 geometry export:

 footprint: the footprint geometries of the buildings or building parts will be exported

 roofprint: the roofprint geometries of the buildings or building parts will be exported

 roofprint, if none then footprint: footprint geometries will be exported if none of the

roofprint geometries are found.

Geometry display options

This parameter section distinguishes between roof and wall surfaces and allows the user to

color them independently. The alpha value affects the transparency of all roof and wall

surface colors in the same manner as in the footprint and extruded cases: 0 results in

transparent (invisible) colors, 255 in completely opaque ones. A click on any color box opens

a color choice dialog.

As previously stated: when not explicitly modeled, thematic surfaces will be inferred for

LoD1 or LoD2 based exports following a trivial logic (surfaces touching the ground –that is,

having a lowest z-coordinate- will be considered wall surfaces, all other will be considered

roof surfaces), in LoD3 or LoD4 based exports surfaces not thematically modeled will be

colored as wall surfaces.

The highlighting effect when running with the mouse over the exported objects can also be

switched on and off. Since the highlighting mechanism relies internally on a switch of the

alpha values on the highlighting surfaces, the alpha value set in this section does not apply to

the highlighted style of geometry exports, only to their normal style. For a detailed

explanation of the highlighting mechanism see the following section.

COLLADA/glTF display options

These parameters control the export of COLLADA and glTF models. The first option

addresses the fact that sometimes objects may contain wrongly oriented surfaces (points

ordered clockwise instead of counter-clockwise) as a result of errors in some previous data

gathering or conversion process. When rendered, wrongly oriented surfaces will only be

textured on the inside and become transparent when viewed from the outside. Ignore surface

orientation informs the viewer to disable back-face culling and render all polygons even if

some are technically pointing away from the camera.

206 3D Geodatabase for CityGML 2019

Note: This will result in lowered rendering performance. Correcting the surface orientation

data is the recommended solution. This option only provides a quick fix for

visualization purposes.

The activation of the option Generate surface normal allows calculating the surface normals

for the exported object surfaces that can be illuminated with a shading effect in 3D scenes and

therefore provides a better visual representation of the 3D object which has a constant color

throughout its surfaces. If this option is not activated, this 3D object will be rendered as a

solid geometry without any visual distinction of its boundary surfaces (cf. Figure 102).

However, when exporting textured 3D models, the shading effect is not relevant, since the

texture information can already provide a sophisticated visual effect.

Note: Starting with version 4.0.0, the Importer/Exporter activates the option Generate

surface normal by default for all (top-level) features if such information is available.

Figure 102: Comparison of the different visual effects of the same 3D model with (the left figure) and without

(the right figure) surface normals

Surface textures can be stored in an image file, or grouped into large canvases containing all

images clustered together so-called texture atlases, which can significantly increase the

storage efficiency and loading speed of 3D models. However, in some CityGML datasets, it

might occur that a very large texture atlas image is shared by multiple surface geometries

belonging to many different city objects. In this case, every exported COLLADA/glTF model

representing a city object will receive a complete copy of the texture atlas image in which

only a small portion of it is actually used. This will result in extreme performance issues when

loading and rendering such COLLADA/glTF models in Earth browsers. In order to avoid this,

the option Crop texture images shall be activated which allows cropping the large texture

atlas image into a number of small texture images, each of which could be very small in size

and should correspond to only one surface geometry of the city object.

3D Geodatabase for CityGML 2019 207

With the option Generate texture atlases with algorithm, grouping images in an atlas or not

and the algorithm selected for the texture atlas construction (differing in generation speed and

canvas efficiency) can be set here. Depending on the algorithm and size of the original

textures, an object can have one or more atlases, but atlases are not shared between separate

objects.

The texture atlas algorithms address the problem of two-dimensional image packing, also

known as 'knapsack problem’ in different ways (see [Coffman et al. 1980]):

 BASIC: recursively divides the texture atlas into empty and filled regions (see

http://www.blackpawn.com/texts/lightmaps/default.html). The first item is placed in

the top left corner. The remaining empty region is split into two rectangles along the

sides of the item. The next item is inserted into one of the free rectangles and the

remaining empty space is split again. Doing this in a recursive way builds a binary tree

representing the texture atlas. When adding an item, there is no information of the

sizes of the items that are going to be packed after this one. This keeps the algorithm

simple and fast. The items may be rotated when being inserted into the texture atlas.

 TPIM: touching perimeter (see [Lodi et al. 1999] and [Lodi et al. 2002]). Sorts images

according to non-increasing area and orients them horizontally. One item is packed at

a time. The first item packed is always placed in the bottom-left corner. Each

following item is packed with its lower edge touching either the bottom of the atlas or

the top edge of another item, and with its left edge touching either the left edge of the

atlas or the right edge of another item. The choice of the packing position is done by

evaluating a score, defined as the percentage of the item perimeter which touches the

atlas borders and other items already packed. For each new item, the score is evaluated

twice, for the two item orientations, and the highest value is selected.

 TPIM w/o image rotation: touching perimeter without rotation. Same as TPIM, but

not allowing for rotation of the original images when packing. Score is evaluated only

once since only one orientation is possible.

From the algorithms, BASIC is the fastest (shortest generation time) and produces good

results, whereas TPIM is the most efficient (highest used area/total atlas size ratio).

Scaling texture images is another means of reducing file size and increasing loading speed. A

scale factor of 0.2 to 0.5 often still offers a fairly good image quality while it has a major

positive effect on these both issues. Default value is 1.0 (no scaling). This setting is

independent from the atlas setting and both can be combined together. It is possible to

generate atlases and then scale them to a smaller size for yet shorter loading times in Earth

browsers.

In the next parameter section, the fill color of the roof and wall surfaces can be set by clicking

on the corresponding color box to open the color selection dialog. The alpha value that affect

the transparency of all surface colors can also be selected from a range of 0 (completely

transparent) to 255 (completely opaque).

208 3D Geodatabase for CityGML 2019

Note: This setting only takes effect if none of the appearance themes (as defined in the

CityGML specification [Gröger et al. 2012]) is selected or available in the currently

connected 3DCityDB instance.

Buildings can be put together in groups into a single model/placemark. This can also speed up

loading, however it can lead to conflicts with the digital terrain model (DTM) of the Earth

browser, since buildings grouped together have coordinates relative to the first building on the

group (taken as the origin), not to the Earth browser's DTM. Only the first building of the

group is guaranteed to be correctly placed and grounded in the Earth browser. If the objects

being grouped are too far apart this can result in buildings hovering over or sinking into the

ground or cracks appearing between buildings that should go smoothly together.

Up to Google Earth 7, no highlighting of model placemarks loaded from a location other than

Google Earth's own servers is supported natively (glowing blue on mouse over). Therefore, a

highlighting mechanism of its own was implemented in the KML/COLLADA/glTF exporter:

highlighting is achieved by displaying a somewhat "exploded" version of the city object being

highlighted around the original object itself. "Exploded" means all surfaces belonging to the

object are moved outwards, displaced by a certain distance orthogonally to the original

surface. This "exploded" highlighting surface is always present, but not always visible: when

the mouse is not placed on any building (or rather, on the highlighting surface surrounding it

closely) this "exploded" highlighting surface has a normal style with an alpha value of 1,

invisible to the human eye. When the mouse is place on it, the style changes to highlighted,

with an alpha value of 140 (hard-coded), becoming instantly visible, creating this model

placemark highlighted feel. The displacement distance for the exploded highlighting surfaces

can be set here. Default value is 0.75m.

Figure 103: Object exported in the COLLADA display form being highlighted on mouseOver

3D Geodatabase for CityGML 2019 209

This highlighting mechanism only works in Google Earth and has an important side effect:

the model's polygons will be loaded and displayed twice (once for the representation itself,

once for the highlighting), having a negative impact in the viewing performance of the Earth

browser. The more complex the models are, the higher the impact is. This becomes

particularly noticeable for models exported from a LoD3 basis upwards. The highlighting and

grouping options are mutually exclusive.

GenericCityObject

As previously stated: in addition to the standard support for surface and solid geometry

exports, other geometry types like point and line for the feature class GenricCityObject can

also be exported in KML format. The related rendering node contains two further

independent subnodes (“Surface and Solid” and “Point and Curve”) that allows for

customizing the export of different geometry types individually. As the subnode “Surface and

Solid” has similar settings illustrated in the previous section, only the settings within the

subnode “Point and Curve” will be explained in the following paragraphs.

210 3D Geodatabase for CityGML 2019

Figure 104: Rendering settings for point and curve geometry exports for GenericCityObject.

The field Altitude mode specifies how the Z-coordinates (altitude) of the exported point

geometries are interpreted by the earth browser. Possible value may be one of the following

options:

 absolute: the altitude is interpreted as an absolute height value in meters according to

the vertical reference system (EGM96 geoid in KML).

 relative: the altitude is interpreted as a value in meters above the terrain. The absolute

height value can be determined by adding the attitude to the elevation of the point.

3D Geodatabase for CityGML 2019 211

 clamp to ground: the altitude will be ignored and the point geometry will be always

clamp to the ground regardless of whether the terrain layer is activated or not.

Three setting options are available which allow user to choose a more appropriate display

form for point geometry on the 3D map:

 Cross: The point geometry can be spatially represented by using a cross-line in the

form like “X” with the length size of around 2 meters (hard-encoded). Changing the

thickness and color settings will affect the width of the cross-line geometry in pixels

and the display color respectively. The mouseOver highlighting effect is also

supported and can be switched on and off by the user. When highlighting is enabled,

further settings can be made for the thickness and color properties of the highlighting

geometry.

Figure 105: An exported point geometry object displayed as a cross-line.

 Icon: An alternative way for displaying point geometry in the earth browser is to use

the KML’s native point placemark that can be represented with an icon in a user-

defined color. The size of the icon can be determined with the help of the Scale

option, where the default value is 1.0 (no scaling) which can give a fairly good

perception.

212 3D Geodatabase for CityGML 2019

Figure 106: An exported point geometry object displayed as an icon.

 Cube: Another possibility of representing the point geometry is to use a small solid

particle whose central point should be identical to the target point. Similar to the

options (Cross and Icon) described above, settings options for the size, color, and

highlighting effect can also be adjusted to achieve an optimal visual effect.

Figure 107: An exported point geometry object displayed as a small cube.

The rendering settings for the export of curve geometry objects can be configured in a similar

manner as those of point geometry with the display form “Cross”.

Note: When displaying curve geometry objects in Google Earth, the altitude modes like

absolute and relative may result in the curves intersecting with or hovering over the earth

ground. If the user wants to keep the curve geometry objects always being draped on the earth

ground, the altitude mode clamp to ground shall be chosen.

3D Geodatabase for CityGML 2019 213

5.6.3.3 Information Balloon Preferences

KML offers the possibility of enriching its placemark elements with information bubbles, so-

called balloons, which pop up when the placemark is clicked on. This is supported by the

Importer/Exporter regardless of the display form in which the objects is exported.

Note: When exporting in the COLLADA display form it is recommended to enable the

"highlighting on mouseOver" option, since model placemarks not coming from

Google Earth servers are not directly clickable, but only through the sidebar.

Highlighting geometries are, on the contrary, directly clickable wherever they are

loaded from.

Note: If you want to use the 3DCityDB-Web-Map-Client (see chapter 8 for more details) to

visualize the exported datasets (KML/glTF models), the options (the both

checkboxes shown in Figure 108) for creating information balloons shall be

deactivated, since the 3DCityDB-Web-Map-Client does not provide support for

showing information balloons. In stead, it utilizes the online spreadsheet (Google

Fusion Table) to query and display attribute information of the respective objects.

Balloon preferences can be set independently for each CityGML top-level feature type. That

means every object can have its own individual template file (so that for instance, WaterBody

balloons display a different background image as Vegetation balloons), and it is perfectly

possible to have information bubbles for some object types while some others have none. For

GenericCityObject, the point and line geometry object can also has its own individual balloon

settings. The following example is set around Building balloons but it applies exactly the

same for all feature classes.

Figure 108: Building Balloon settings.

214 3D Geodatabase for CityGML 2019

The contents of the balloon can be taken from a generic attribute called Balloon_Content

associated individually to each city object in the 3DCityDB. They can also be uniform for all

objects in an export by using an external HTML file as a template, or a combination of both:

individually and uniformly set, the Balloon_Content attribute (individually) having priority

over the external HTML template file (uniform). A few Balloon HTML template files can be

found after software installation in the subfolder templates/balloons of the installation

directory.

The balloons can be included in the doc.kml file generated at export, or they can be put into

individual files (one for each object) written together into a "balloon" directory. This makes

later adaption work easier if some post-processing (manual or not) is required. When balloon

contents are put into a separate file for each exported object, access to local files and personal

data must be granted in Google Earth (Tools Options General) for the balloons to show.

The balloon contents do not need to be static. They can contain references to the data

belonging to the city object they relate to. These references will be dynamically resolved (i.e.:

the actual value for the current object will be put in their place) at export time in a way similar

to how Active Server Pages (ASP) [Microsoft, 2015] work. Placeholders embedded in the

HTML template, beginning with <3DCityDB> and ending with </3DCityDB> tags, will

be replaced in the resulting balloon with the dynamically determined value(s). The HTML

balloon templates can also include JavaScript code.

For all concerns, including dynamic content generation, it makes no difference whether the

template is taken from the Balloon_Content generic attribute or from an external file.

Balloon template format. As previously stated, a balloon template consists of ordinary

HTML, which may or may not contain JavaScript code and <3DCityDB> placeholders for

object-specific content. These placeholders follow several elementary rules.

Rules for simple expressions

 Expressions begin with <3DCityDB> and end with </3DCityDB>. Expressions are

not case-sensitive.

 Expressions are coded in the form "TABLE/[AGGREGATION FUNCTION]

COLUMN [CONDITION]". Aggregation function and condition are optional. When

present they must be written in square brackets (they belong to the syntax). These

expressions represent an alternative coding of a SQL select statement: SELECT

[AGGREGATION FUNCTION] COLUMN FROM TABLE [WHERE

condition]. Tables refer to the underlying 3DCityDB table structure (see chapter

2.3.2 for details).

 Each expression will only return those entries relevant to the city object being

currently exported. That means an implicit condition clause somewhat like

"TABLE.CITYOBJECT_ID = CITYOBJECT.ID" is always considered and does

not need to be explicitly written.

3D Geodatabase for CityGML 2019 215

 Results will be interpreted and printed in HTML as lists separated by commas. Lists

with only one element are the most likely, but not exclusively possible, outcome.

When only interested in the first result of a list the aggregation function FIRST

should be used. Other possible aggregation functions are LAST, MAX, MIN, AVG, SUM

and COUNT.

 Conditions can be defined by a simple number (meaning which element from the

result list must be taken) or a column name (that must exist in underlying 3DCityDB

table structure) a comparison operator and a value. For instance: [2] or [NAME =

'abc'].

 Invalid results will be silently discarded. Valid results will be delivered exactly as

stored in the 3DCityDB tables. Later changes on the returned results - like substring()

functions - can be achieved by using JavaScript.

 All elements in the result list are always of the same type (the type of the

corresponding table column in the underlying 3DCityDB). If different result types

must be placed next to each other, then different <3DCityDB> expressions must be

placed next to each other.

Special keywords in simple expressions

 The balloon template files have several additional placeholders for object-specific

content, called SPECIAL_KEYWORDS. They refer to data that is not retrieved “as is”

in a single step from a table in the 3DCityDB but has to undergo some processing

steps (not achievable by simple JavaScript means) in order to calculate the final value

before being exported to the balloon. A typical processing step is the transformation of

some coordinate list into a CRS different from the one the 3DCityDB is originally set

in. The coordinates in the new CRS cannot be included in the balloon with their

original values as read from the database (which was the case with all other expression

values so far), but must be transformed prior to their addition to the balloon contents.

 Expressions for special keywords are not case-sensitive. Their syntax is similar to

ordinary simple expressions, start and end are marked by <3DCityDB> and

</3DCityDB> tags, the table name must be SPECIAL_KEYWORDS (a non-existing

table in the 3DCityDB), and the column name must be one of the following:

CENTROID_WGS84 (coordinates of the object’s centroid in WGS84 in the following

order: longitude, latitude, altitude)

CENTROID_WGS84_LAT (latitude of the object’s centroid in WGS84)

CENTROID_WGS84_LON (longitude of the object’s centroid in WGS84)

BBOX_WGS84_LAT_MIN (minimum latitude value of the object’s envelope in

WGS84)

BBOX_WGS84_LAT_MAX (maximum latitude value of the object’s envelope in

WGS84)

BBOX_WGS84_LON_MIN (minimum longitude value of the object’s envelope in

WGS84)

216 3D Geodatabase for CityGML 2019

BBOX_WGS84_LON_MAX (maximum longitude value of the object’s envelope in

WGS84)

BBOX_WGS84_HEIGHT_MIN (minimum height value of the object’s envelope in

WGS84)

BBOX_WGS84_HEIGHT_MAX (maximum height value of the object’s envelope in

WGS84)

BBOX_WGS84_LAT_LON (all four latitude and longitude values of the object’s

envelope in WGS84)

BBOX_WGS84_LON_LAT (all four longitude and latitude values of the object’s

envelope in WGS84)

 No aggregation functions or conditions are allowed for SPECIAL_KEYWORDS. If

present they will be interpreted as part of the keyword and therefore not recognized.

 The SPECIAL_KEYWORDS list is also visible and available in its current state in the

updated version of the Spreadsheet Generator Plugin (see the following section). The

list can be extended in further Importer/Exporter releases.

Examples for simple expressions:

<3DCityDB>ADDRESS/STREET</3DCityDB>

returns the content of the STREET column on the ADDRESS table for this city object.

<3DCityDB>BUILDING/NAME</3DCityDB>

returns the content of the NAME column on the BUILDING table for this city object.

<3DCityDB>CITYOBJECT_GENERICATTRIB/ATTRNAME</3DCityDB>

returns the names of all existing generic attributes for this city object. The names will

be separated by commas.

<3DCityDB>CITYOBJECT_GENERICATTRIB/REALVAL

 [ATTRNAME = 'H_Trauf_Min']</3DCityDB>

returns the value (of the REALVAL column) of the generic attribute with attrname

H_Trauf_Min for this city object.

<3DCityDB>APPEARANCE/[COUNT]THEME</3DCityDB>

returns the number of appearance themes for this city object.

<3DCityDB>APPEARANCE/THEME[0]</3DCityDB>

returns the first appearance for this city object.

<3DCityDB>SPECIAL_KEYWORDS/CENTROID_WGS84_LON</3DCityDB>

returns the longitude value of this city object’s centroid longitude in WGS84.

<3DCityDB> simple expressions can be used not only for generating text in the balloons,

but any valid HTML content, like clickable hyperlinks:

3D Geodatabase for CityGML 2019 217

<a href="<3DCityDB>EXTERNAL_REFERENCE/URI</3DCityDB>">

click here for more information

returns a hyperlink to the object's external reference,

or embedded images:

 <img src= "<3DCityDB>CITYOBJECT_GENERICATTRIB/URIVAL

 [ATTRNAME='Illustration']</3DCityDB>" width=400>

This last example produces, for instance, in the case of the Pergamon Museum in Berlin:

<img src="http://upload.wikimedia.org/wikipedia/commons/d/

d1/FrisoaltarPergamo.jpg" width=400>

Figure 109: Dynamically generated balloon containing an embedded image (image taken from Wikimedia).

Simple expressions are sufficient for most use cases, when only a single value or a list of

values from a single column is needed. However, sometimes the user will need to access more

than one column at the same time with an unknown amount of results. For these situations

(listing of all generic attributes along with their values is one of them) iterative expressions

were conceived.

http://upload.wikimedia.org/wikipedia/commons/d/d1/FrisoaltarPergamo.jpg
http://upload.wikimedia.org/wikipedia/commons/d/d1/FrisoaltarPergamo.jpg

218 3D Geodatabase for CityGML 2019

Rules for iterative expressions

 Iterative expressions will adopt the form:

<3DCityDB>FOREACH

 TABLE/COLUMN[,COLUMN][,COLUMN][...][,COLUMN][CONDITION]

</3DCityDB>

[...]

HTML and JavaScript code (column content will be referred to as %1, %2, etc. and

follow the columns order in the FOREACH line. %0 is reserved for displaying the

current row number)

[...]

<3DCityDB>END FOREACH</3DCityDB>

 No aggregation functions are allowed for iterative expressions. The amount of

columns is free, but they must belong to the same table. Condition is optional. Implicit

condition (data must be related to the current city object) applies as for simple

expressions.

 FOREACH means truly "for each". No skipping is possible. If skipping at display time

is needed it must be achieved by JavaScript means.

 The generated HTML will have as many repetitions of the HTML code between the

FOREACH and END FOREACH tags as lines the query result has.

 No inclusion of simple expressions or SPECIAL_KEYWORDS between FOREACH and

END FOREACH tags is allowed.

 No nesting of FOREACH statements is allowed.

Examples for iterative expressions:

Listing of generic attributes and their values:

<script type="text/javascript">

 function ga_value_as_tooltip(attrname, datatype, strval,

 intval, realval)

 {

 document.write("<span title=\"");

 switch (datatype) {

 case "1": document.write(strval);

 break;

 case "2": document.write(intval);

 break;

 case "3": document.write(realval);

 break;

 default: document.write("unknown");

 };

3D Geodatabase for CityGML 2019 219

 document.write("\">" + attrname + "");

 }

 <3DCityDB>FOREACH

 CITYOBJECT_GENERICATTRIB/ATTRNAME,DATATYPE,STRVAL,

 INTVAL,REALVAL</3DCityDB>

 ga_value_as_tooltip("%1", "%2", "%3", "%4", "%5");

 <3DCityDB>END FOREACH</3DCityDB>

</script>

Figure 110: Model placemark with dynamic balloon contents showing the list of generic attributes.

220 3D Geodatabase for CityGML 2019

5.6.3.4 Altitude/Terrain Preferences

In order to ensure a perfect display of the exported datasets in the Earth browser, some

adjustments on the z coordinate for the exported 3D objects may be necessary.

Figure 111: Altitude/Terrain settings.

Use original z-Coordinates without transformation

Depending on the spatial database used, the transformation of the original coordinates to

WGS84 will include transformation of the z-coordinates (PostGIS >= 2.0 or Oracle >= 11g)

or not (Oracle 10g). To make sure only the planimetric (x,y) and not the z-coordinates are

transformed this checkbox must be selected. This is useful when the used terrain model is

different from Google Earth’s and the z-coordinates are known to fit perfectly in that terrain

model.

Another positive side-effect of this option is that GE_LoDn_zOffset attribute values

(explained in the following section) calculated for Oracle 10g keep being valid when imported

into PostGIS >= 2.0 or Oracle >= 11g. Otherwise, when switching database versions and not

making use of this option, GE_LoDn_zOffset values must be recalculated again.

GE_LoDn_zOffset attribute values calculated for Oracle 10g are consistent for all

KML/COLLADA/glTF exports from Oracle 10g. The same applies to PostGIS >= 2.0 or

Oracle >= 11g. Only cross-usage (calculation in one version, export from the other) creates

inconsistencies that can be solved by turning z-coordinate transformation off.

This setting affects the resulting GE_LoDn_zOffset if used when a cityobject has none such

value yet and is exported in KML/COLLADA for the first time, so it is recommended to

remember its status (z-coordinate transformation on or off) for all future exports.

3D Geodatabase for CityGML 2019 221

Altitude mode

Allows the user to choose between relative (to the ground), interpreting the altitude as a value

in meters above the terrain, or absolute, interpreting the altitude as an absolute height value in

meters according to the vertical reference system used by the Earth browser (e.g., Google

Earth uses the EGM96 geoid, whereas Cesium uses the WGS84 ellipsoid), or clamp to

ground, which allows the exported objects to be always clamped to ground.

This means, when relative altitude mode is chosen, the z-coordinates of the exports represent

the vertical distance from the digital terrain model (DTM) of the Earth browser, which should

be 0 for those points on the ground (the building's footprint) and higher for the rest (roof

surfaces, for instance). However, z-coordinate values of the city objects stored in a 3DCityDB

usually have values bigger than 0, so choosing this altitude mode will often result in exports

hovering over the ground.

Figure 112: Possible export result with relative altitude mode.

When absolute altitude mode is chosen, the z-coordinates of the exports represent the vertical

distance from the vertical datum - the ellipsoid or geoid which most closely approximates the

Earth curvature, regardless of the DTM at that point. This implies, choosing this altitude mode

may result in buildings sinking into the ground wherever the DTM indicates there is a hill or

hovering over the ground wherever the DTM indicates a dent.

When the clamp to ground altitude mode is chosen, the z-coordinate values of the exported

objects will be ignored and every surface geometry of the KML models will be forced to lie

on the surface of the ground.

222 3D Geodatabase for CityGML 2019

For a proper grounding, the Altitude offset setting can additionally be used so that a positive

or negative offset value can be applied to all z-coordinates of the exports, moving the city

objects up and down along the z-axis until they match the ground.

Note: Both Altitude mode and Altitude offset settings will only take effect when the city

objects are exported in the Geometry or COLLADA/glTF display forms. When, for

example, the Footprint display form is selected, The KML/COLLADA/glTF-

Exporter will internally use the clamp to ground altitude mode to ensure that the

exported geometries will be always clamped to ground regardless of the altitude

mode chosen by the user. Likewise, when exporting in the Extruded display form,

the relative altitude model will be internally applied and the height value of the

respective city object will be used to represent the relative height above the ground.

Altitude offset

A value, positive or negative, can be added to the z coordinates of all geometries in one export

in order to place them higher or lower over the earth surface. This offset can be 0 for all

exported objects (no offset), it can be constant for all (constant), or it can have an individual

value for each object to ensure that the bottom of the object is placed on the earth surface.

The first option no offset implies that the z-coordinates of all geometries are kept unchanged

at export time if the option Use original z-Coordinates without transformation is selected.

The second option constant is particularly appropriate for exports of a single city object,

allowing some fine-tuning of its position along the z-axis.

When exporting regions - via bounding box settings -, the other two options, Move each

object to bottom height 0 and Use generic attribute "GE_LoDn_zOffset", are recommended.

Once the option Move each object to bottom height 0 is selected, the elevation value of the

lowest point for every object will be calculated and its inversed value should exactly equal to

the zOffset value of the respective object. This zOffset value will be used for adjusting the z-

coordinates of the object to ensure that its lowest point has a height of 0 meter. This setting is

particularly advisable, since combined with the relative altitude mode the exported objects

can always be properly placed on the ground in Google Earth regardless of whether its terrain

layer is activated or not. However, if the absolute altitude is chosen, a proper grounding of the

objects requires that the terrain layer in Google Earth must be deactivated.

Note: Regardless of the chosen altitude mode, the Cesium-based 3DCityDB-Web-Map-

Client always interprets the altitude as an absolute height value in meters according to

the WGS84 ellipsoid reference system. Thus, the option Move each object to bottom

height 0 can only ensure a proper grounding of the objects on the Cesium Virtual

Globe when its WGS84 ellipsoid terrain model (default) is activated.

When choosing the absolute altitude model and displaying city objects on Google Earth with

enabled terrain layer, the option Use generic attribute "GE_LoDn_zOffset" shall be selected.

Here the GE_LoDn_zOffset generic attribute value can be automatically calculated by the

Importer/Exporter if not available. This calculation uses data returned by Google's Elevation

3D Geodatabase for CityGML 2019 223

API [Google Elevation API, 2015]. After completing the calculation, the results will be stored

in the CITYOBJECT_GENERICATTRIB table of the 3DCityDB for future use.

Note: Starting from July 2018, an Elevation API key is required in order to enable access to

the Google Elevation Service. Thus, the option Call the Google Elevation API when

no data is available should only be enabled when a valid Elevation API key is

available. Users can provide their own Elevation API key in the general preferences as

described in chapter 5.6.5.4. For more details on the Google Maps Platform Terms of

Service, please refer to https://cloud.google.com/maps-platform/terms/.

Since city objects may have different geometries for different LoDs, the anchoring points and

their elevation values may also differ for each LoD. This explains the need for having

GE_LoD1_zOffset, GE_LoD2_zOffset, etc. generic attributes for one single object.

The algorithm used to calculate the individual zOffset for an object iterates over the points

with the lowest z-coordinate in the object, calling Google's elevation API in order to get their

elevation. The point with the lowest elevation value will be chosen for anchoring the object to

the ground. The zOffset value results from subtracting the point's z-coordinate from the

point's elevation value.

When calling Google's elevation API for calculating the zOffset of an object a message is

shown: "Getting zOffset from Google's elevation service for BLDG_0003000e008c4dc4".

Saving the building's height offset in the form of a generic attribute ensures this information

will be present in every export in CityGML format (and therefore at every re-import) and can

thus be transported across databases. Please note, that not the DTM height value of Google

Earth will be stored but the difference of the individual building’s minimum z value and the

value reported by the Google Elevation Service. Following this approach further usage

restrictions of the Google Elevation Service are avoided.

In some unusual cases, even after automatic calculation of the GE_LoDn_zOffset value the

object may still not be perfectly grounded to the Earth surface for a number of reasons; e.g.

wrong height data of the model, or low resolution of the DTM at that area. In those cases a

manual adjustment of the value in the 3DCityDB is needed. After the content of

GE_LoDn_zOffset has been fine-tuned to a proper value it should be persistently stored in the

database.

https://cloud.google.com/maps-platform/terms/

224 3D Geodatabase for CityGML 2019

Figure 113: Points sent to Google's Elevation API for calculation of the zOffset.

Figure 114: Export with absolute altitude mode and no offset.

3D Geodatabase for CityGML 2019 225

Figure 115: Export with absolute altitude mode and use of GE_LoDn_zOffset.

5.6.3.5 General setting recommendations

Depending on the quality and complexity of the 3DCityDB data, export results may vary

greatly in aesthetic and loading performance. Experimenting will be required in most cases

for a fine-tuning of the export parameters. However, some rules apply for almost all cases:

 kmz format use is recommended when the files will be accessed over a network and

the selected display form is Footprint, Extruded, or Geometry. In case of glTF-export,

only kml format is allowed.

 Visibility values for the different display forms should be increased in steps of around

one third of the tile side length.

 Visibility from 0 pixels (always visible) should be avoided, especially for large or

complex exports, because otherwise the Earth browser will immediately load all data

at once since it all must be visible.

 Tile side length (whether tiling is automatic or manual) should be chosen so that the

resulting tile files are smaller than 10MB. When single files are bigger than that

Google Earth gets unresponsive. For densely urbanized areas, where many placemarks

are crimped together a tile side length value between 50 and 100m should be used.

 When not exporting in the COLLADA/glTF display form, files will seldom reach this

10MB size, but Earth browser will also become unresponsive if the file loaded

contains a lot of polygons, so do not use too large tiles for footprint, extruded or

geometry exports even if the resulting files are comparatively small.

 Do not choose too small tile sizes, many of them may become visible at the same time

and render the tiling advantage useless.

226 3D Geodatabase for CityGML 2019

 Using texture atlas generation when producing COLLADA/glTF display form exports

always results in faster model loading times.

 From all texture atlas generating algorithms, BASIC is the fastest (shortest generation

time), TPIM the most efficient (highest used area/total atlas size ratio).

 Texture images can often be scaled down to 0.2 - 0.5 without noticeable quality loss.

This depends, of course, on the quality of the original textures.

 Highlighting puts the same polygons twice in the resulting export files, one for the

buildings themselves, one for their highlighting. This has a negative impact on the

viewing performance. The more complex the buildings are the worse the impact.

When highlighting is enabled for exports based on a CityGML LoD3 or higher Google

Earth may become quite slow.

 If you want to use the 3DCityDB-Web-Map-Client to visualize the exported datasets,

options for creating highlighting geometries should not be chosen, since the

highlighting functionality is already well-supported by the 3DCityDB-Web-Map-

Client which requires no extra highlighting geometries.

 The 3DCityDB-Web-Map-Client allows for on-the-fly activating and deactivating

shadow visualization of 3D objects exported in the glTF format. However, this

functionality is currently not available when viewing KML models exported in the

Footprint, Extruded, and Geometry display forms.

 Balloon generation is slightly more efficient when a single template file is applied for

all exported objects.

 When exporting in the Footprint or Extruded display forms, the altitude/terrain

settings will be silently ignored by the KML/COLLADA/glTF-Exporter which will

instead internally applies the appropriate altitude models to the exported objects to

ensure that they will be properly placed on the ground in Earth browsers. However,

when exporting in the Geometry or COLLADA/glTF display forms, the altitude/terrain

settings must be properly adapted regarding the Earth browsers to be used.

 In most cases, the combination of the relative altitude mode with the Move each object

to bottom height 0 altitude offset allows for a proper grounding and displaying of the

objects in Earth browsers. However, when using the Cesium-based 3DCityDB-Web-

Map-Client, its default WGS84 ellipsoid terrain model must be activated.

 When using the absolute z-coordinates and displaying the exported datasets together

with terrain layer in Google Earth, you need to choose the following combination of

settings, should you have a valid Goole Elevation API key: absolute altitude mode,

generic attribute “GE_LoDn_zOffset”, and call Google's elevation API when no data

is available.

3D Geodatabase for CityGML 2019 227

 Management of user-defined coordinate reference systems

When setting up an instance of the 3D City Database, a coordinate reference system (CRS)

must be chosen for the entire database (cf. chapter 3.3). This CRS is used as default reference

system for all spatial objects that are created and stored in the database instance (expect

implicit geometries) as well as for building spatial indexes and performing spatial functions.

At many places, the Importer/Exporter allows for providing coordinate values associated with

a different CRS though, e.g. when defining spatial bounding box filters for CityGML imports

and exports and KML/COLLADA/glTF exports, or when defining a target CRS into which

coordinate values shall be converted during CityGML exports (see the documentation of the

corresponding operations). To add and manage additional reference systems, the

Importer/Exporter provides a corresponding dialog on the Preferences (Reference

systems subnode of the Database preferences node) tab as shown below.

Figure 116: Database preferences – Reference systems.

On top of the preferences page [1], a drop-down list allows for choosing a CRS for display

and editing from the list of user-defined CRSs. This list contains at minimum one predefined

entry called Same as in database which represents the internal CRS of the 3D City Database

instance. This entry will always show the SRID and CRS URN encoding of the currently

connected database instance. Since the internal CRS shall not be changed after database setup

using the Importer/Exporter, the fields of the Same as in database entry cannot be edited.

A new user-defined CRS can be added to this list after clicking the New button. Please

provide the database-internal SRID in the corresponding SRID input field of the user dialog

and enter the URN encoding of the CRS into the gml:srsName input field (optional). This

field also provides a drop-down list of commonly used encoding schemes which can be used

as template (such as the OGC encoding scheme). A short, meaningful textual description of

the CRS must be provided in the Description field. This description is used as value for the

1

2

228 3D Geodatabase for CityGML 2019

drop-down on top of the dialog, but also for similar CRS drop-down lists on further tabs of

the Importer/Exporter. The new CRS is added to the list of user-defined CRSs upon clicking

the Apply button. The following screenshot provides an example.

Figure 117: Adding a new CRS to the list of user-defined CRSs.

The Copy button allows for adding a further CRS by copying and editing the information of

an already existing user-defined CRS. The currently selected CRS is deleted from the list by

clicking the Delete button. The Check button next to the SRID input field facilitates to verify

whether the provided SRID is supported by the currently connected 3D City Database

instance. After a successful check, the non-editable fields Database name and SRS type will

be filled with the corresponding information collected from the currently connected 3D City

Database instance. If the Importer/Exporter is not connected to a database instance, the Check

button is disabled.

The result of the SRID verification may vary between different 3D City Database instances

since 1) the list of predefined spatial reference systems differs between different database

systems and versions and 2) both Oracle and PostgreSQL/PostGIS support the definition of

user-defined spatial reference systems on the database side (please check the respective

database documentation for guidance).

Note: In order to add a user-defined CRS to the Importer/Exporter that is not supported by

the underlying Oracle or PostgreSQL/PostGIS database, you need to first register this

CRS in your database. As soon as the CRS is available from the database, it can be

added to the list of user-defined CRSs in the Importer/Exporter.

The list of user-defined CRSs is automatically stored in the config file of the

Importer/Exporter and loaded upon application start. It can additionally be exported into an

extra file (see [2] in Figure 116). This allows for easily sharing user-defined CRSs between

different installations of the Importer/Exporter. Please provide a valid filename in the

3D Geodatabase for CityGML 2019 229

corresponding input field Filename (use the Browse button to open a file selection dialog) and

click on Save. There are two more options for importing such an external list of CRSs: 1) the

CRSs listed in the external file can be added to the current list of CRSs (Add button) or 2) the

external list can be used to replace the current list (Replace with button).

The Importer/Exporter is shipped with a number of predefined CRSs organized in subfolders

below templates/CoordinateReferenceSystems in the installation folder. Each

CRS definition is stored in its own file and, thus, can be easily imported and added to the list

of user-defined CRSs. Note that the URN encoding of the predefined CRSs generally lacks a

height reference system. The height reference therefore must be added before using this CRS

as target reference system for CityGML exports (cf. chapter 5.4 for more details).

 General preferences

In addition to the preference settings that influence the behavior of a particular import or

export operation (cf. previous sections), the General node on the Preferences tab offers

application-wide settings.

5.6.5.1 Cache

Both during CityGML imports at exports, the Importer/Exporter has to keep track of various

temporary information. For instance, when resolving XLinks, the gml:id values as well as

additional information about the related features and geometries must be available. Since the

Importer/Exporter is designed to be able to process arbitrarily large CityGML input files,

keeping this information in main memory only is not a promising strategy. For this reason, the

information is written to temporary tables in the database as soon as user-defined memory

limits are reached.

Figure 118: General preferences – Cache.

Per default, temporary tables are created in the 3D City Database instance itself. The tables

are populated during the import and export operation and are automatically dropped after the

operation has finished. Alternatively, the user can choose to store the temporary information

in the local file system instead. An absolute path where to create the file-based storage has to

be provided. Either type the location manually into the input field or use the Browse button to

open a file selection dialog. A subfolder of the local temp folder of the operating system user

running the Importer/Exporter is proposed as default location (depends on the operating

230 3D Geodatabase for CityGML 2019

system in use). Like with temporary database tables, the file-based storage is automatically

removed after the operation has finished.

Some reasons for using a file-based storage are:

 The 3D City Database instance is kept clean from any additional (temporary) table.

 If the Importer/Exporter runs on a different machine than the 3D City Database

instance, sending temporary information over the network might be slow. In such

cases, using a local storage might help to increase performance.

5.6.5.2 Import and export path

This preference dialog allows for setting a default path for import and export operations.

Figure 119: General preferences – Import and export path.

Simply choose between the last used import/export path (default) or browse for a specific

folder in your local file system. The selected folder will then be used as default path in all

dialogs that require an input/output file.

5.6.5.3 Network proxies

Some of the functionalities offered by the Importer/Exporter require internet access. This

applies, for instance, to the XML validation when accessing XML Schema documents on the

web, to the map window for the graphical selection of bounding boxes (uses OpenStreetMap

data), or to the automated calculation of height offsets during KML/COLLADA/glTF exports

(based on the Google Elevation Service).

Most computers in corporate environments have no direct internet access but must use a

proxy server. The preference dialog shown below let you configure network proxies.

3D Geodatabase for CityGML 2019 231

Figure 120: General preferences – Network proxies.

The Importer/Exporter supports Web (HTTP), Secure web (HTTPS) and SOCKS proxies.

Usually, configuring a Web proxy (HTTP) is enough for most tasks, like those mentioned

above. However, more sophisticated use cases, like uploading cloud documents via an

Importer/Exporter extension plugin (cf. chapter 6.2) may require Secure web proxy (HTTPS)

support. SOCKS proxy support should currently only be needed when the Importer/Exporter

and the database system running the 3D City Database reside in different networks.

Whenever one of the protocols to be handled by a proxy is selected in the choice list at the top

of the dialog, the corresponding settings must be provided in the fields below: Server, Port,

and if the proxy requires login credentials Username and Password. Default Port values for

each protocol are automatically filled in (HTTP: 80; HTTPS: 443; SOCKS: 1080) and only

need to be changed if required.

It is also possible to define one single proxy for all protocols by simply selecting the

corresponding checkbox under the protocol list. Just make sure the proxy server supports all

protocols and that they can all be routed through the given Port.

Proxies are only used if the checkbox next to the protocol type is enabled. Otherwise, the

proxy configuration will be stored but remains inactive. When the proxy for a given protocol

is enabled, every outgoing connection by the Importer/Exporter that uses the protocol will be

routed through this proxy.

In case the computer running the Importer/Exporter is directly connected to the internet no

proxies need to be configured.

5.6.5.4 API Keys

The Importer/Exporter uses external web services offered by third party providers for

different tasks and functionalities. Some of these services are open and free to use, whereas

232 3D Geodatabase for CityGML 2019

others are more restrictive and require passing an API key to use the service. In the API

Keys preference dialog, you can provide your API keys for different services.

Figure 121: General preferences – API keys.

The Google Maps API services can be used by the Importer/Exporter for two different tasks:

1) the Geocoding API is used for geocoding addresses and address lookups in the map

window (cf. chapter 5.7), and 2) the Maps Elevation API is used in KML/COLLADA exports

for retrieving height values from the Google Earth terrain model (cf. chapter 5.6.3.4). If you

want to use one of these services, then you must enter the corresponding API key in the above

dialog. Otherwise the services will respond with an error message that will be displayed by

the Importer/Exporter. Please visit the Google Maps API website if you do not have an API

key yet but intent to get one.

Note: Google has changed the usage and pricing policies for the above-mentioned services

starting from July 16, 2018. Thus, in previous versions of the Importer/Exporter, the

services could be used without entering an API key.

5.6.5.5 Logging

The Importer/Exporter logs information about events such as activities or failures, for instance

during database imports and exports. Each log entry consists of a timestamp when the event

occurred, a log level indicating the severity of the event and a human-readable message text.

Log messages are always printed to the console window and may additionally be forwarded to

a log file on your local computer. The Logging preference dialog is shown below.

3D Geodatabase for CityGML 2019 233

Figure 122: General preferences – Logging.

The following four log levels are distinguished (from highest to lowest severity):

 ERROR An error has occurred (usually an exception). This comprises internal

and unexpected failures. Moreover, invalid XML content of

CityGML instance documents is reported via this log level. Fatal

errors will cause the running operation to abort.

 WARN An unusual condition has been detected. The operation in progress

continues to work but the user should check the warning and take

appropriate actions.

 INFO An interesting piece of information about the current operation that

helps to give context to the log, often when processes are starting or

stopping.

 DEBUG Additional messages reporting the internal state of the application.

The log level for messages printed to the console window can be chosen from a drop-down

list in the Console dialog [1]. The log will include all events of the indicated severity as

well as events of greater severity (default: INFO). Word wrapping can be optionally enabled

for long message texts that otherwise exceed the width of the console window. In addition, the

color scheme for console log messages can be customized by assigning text colors to each log

level.

Note: The log output in the console window is truncated after 10,000 log messages in order

to prevent high main memory consumption.

If log messages shall additionally be stored in a log file, simply activate the option Write

messages to log file. The log file is named log_3dcitydb_impexp_<date>.log per

default, where <date> is replaced with the current date at program startup. The

1

2

234 3D Geodatabase for CityGML 2019

Importer/Exporter creates the log file if it does not exist. Otherwise, log messages are

appended to the existing log file. The user can choose a location where to store the log file by

enabling the option Use alternative path for log files and by providing a corresponding path

[2]. Either enter the path manually or click on Browse to open a file selection dialog. The log

level can be chosen independent from the console window through the corresponding drop-

down list [2] (default: INFO).

Note: Log files are per default stored in the home directory of the operating system user

running the Importer/Exporter. Precisely, you will find the log files in the subfolder

3dcitydb/importer-exporter-3.0/log. However, the location of the

home directory differs for different operating systems. Using environment variables,

the location can be identified dynamically:

 %HOMEDRIVE%%HOMEPATH%\3dcitydb\importer-exporter-

3.0\log (Windows 7 and higher)

 $HOME/3dcitydb/importer-exporter-3.0/log (UNIX/Linux, Mac

OS families)

5.6.5.6 Language selection

The Importer/Exporter GUI has support for different languages. Use the Language

selection preference dialog shown below to pick your favourite language.

Figure 123: General preferences – Language selection.

3D Geodatabase for CityGML 2019 235

5.7 Map window for bounding box selections

The Importer/Exporter GUI offers a 2D map window that allows the user to display the

overall bounding box calculated from the city model content stored in each 3D City Database

instance and to graphically select a bounding box filter for data imports and exports.

There are two ways to open the map windows:

1. Choose the entry View Open map window from the menu bar at the top of the

application window.

2. Click the map button on the bounding box dialog available on the Import,

Export, KML/COLLADA/glTF Export and Database tabs of the operations

window.

The 2D map is rendered in a separate application window shown below.

Figure 124: 2D map window for bounding box selections.

1 2

7
3

4

5

6

236 3D Geodatabase for CityGML 2019

The map content is provided by the OpenStreetMap (OSM) service and is subject to the OSM

usage and license terms. Make sure your computer has internet access to load the map. This

might require setting up network proxies (see chapter 5.6.5.3). Please consult your network

administrator.

The map offers default mouse controls for panning and zooming. For convenience, a

geocoding service is included in the map window [1]. Simply type in an address or a geo

location (given by geographic lat/lon coordinates separated by a comma) and click the Go

button. The map will automatically zoom to the first match. Further matches are available

from the drop-down list [1]. The geocoding service uses the free OSM Nominatim service per

default. You can pick the Goolge Geocoding API as alternative service from the drop-down

list in [5]. Note that the Goolge Geocoding API is not free but requires an API key that must

be entered in the global preferences of the Importer/Exporter (cf. chapter 5.6.5.4). Otherwise

the service will respond with an error message. Independent of the service you choose, make

sure that you adhere to its terms of use.

To display the result of the geocoding query on Google Maps in your default internet browser,

simply click the Show in Google Maps button [6].

A list of usage hints is available at the right top of the map window [7]. Please click on the

Show usage hints link to display this list. The map controls are also described in the

following.

 Select bounding box: Move the mouse while pressing the ALT key and the left

mouse button to select a bounding box. The bounding box is displayed in a light

magenta color. Once the left mouse button is released, the coordinates of the

bounding box are automatically filled in the Bounding Box dialog on left of

the map [3]. If you have opened the map window from a bounding box filter

dialog, then clicking the Apply button on the upper right corner of the window [2]

closes the map window and carries the bounding box values to the filter dialog.

In addition, the values are copied to the clipboard.

 Lookup address: Right-click on the map to bring up a context menu for the geo

location at the mouse pointer. From the context menu, choose Lookup address

here. This will trigger a reverse geocoding query using the geocoding service

selected in [5]. The resulting address will be displayed on the left of the window

[4]. The icon denotes which location on the map is associated with the

address, whereas the icon shows where you clicked on the map (see Figure

125).

 Zoom in/out: Use the mouse wheel or the context menu (right-click).

 Zoom into selected area: Move the mouse while pressing the SHIFT key and the

left mouse button to select an area. The selected area is displayed in a light grey

color. Once the left mouse button is released, the map zooms into the selected

3D Geodatabase for CityGML 2019 237

area. If the maximum zoom level is reached this action has no further effect.

 Move map: Keep the left mouse button pressed to move the map.

 Center map and zoom in: Double click the left mouse button to center the map at

that position and to increase the current zoom level by one step.

 Use popup menu for further actions: Right-click on the map to bring up a context

menu offering additional functions such as Zoom in, Zoom out, Center map here

and Lookup address here (see above). The Get map bounds function is equivalent

to selecting the visible map content as bounding box. Thus, the map will be

shown in light magenta and the map bounds are transferred to the Bounding

Box dialog on the left [3].

To close the map, simply click the Cancel button in the upper right corner [2].

Figure 125: Address lookup in the map window.

The coordinates in the map window and of the selected bounding box are always given in

WGS 84 regardless of the coordinate reference system of the 3D City Database instance.

When opening the map window from a bounding box dialog that already contains coordinate

values (e.g., from a filter dialog on the Import, Export or KML/COLLADA/glTF

Export tabs or after having calculated the entire area of the database content on the

Database tab), the map window will automatically display this bounding box. If the

coordinate values of the provided bounding box are not in WGS 84, a transformation to WGS

84 is required. Since the Importer/Exporter uses functionality of the underlying spatial

238 3D Geodatabase for CityGML 2019

database system for coordinate transformations, a connection to the database must have been

established beforehand. In case there is no active database connection, the following pop-up

window asks the user for permission to connect to the database.

Figure 126: Asking for permission before connecting to a database for coordinate transformation.

The Apply button on the upper right corner of the map window [2] is a shortcut for copying

the coordinate values to the clipboard and pasting them in the bounding box fields of the

calling tab on the operations window. Furthermore, coordinate values can now be easily

copied from one tab to another by simply clicking on the copy button in one of them, say

Import tab, with filled bounding box values, changing to another, say

KML/COLLADA/glTF Export tab and clicking on the button there. Previously existing

values in the bounding box fields of the KML/COLLADA/glTF Export tab (if any) will be

overwritten.

5.8 Using the command line interface (CLI)

In addition to the graphical user interface, the Importer/Exporter also offers a command line

interface (CLI). The CLI allows a user to run the Importer/Exporter from the command line

(or a shell script) and to easily embed it in batch processing workflows and third-party

applications.

To use the CLI, you first need to start a shell environment offered by the operating system of

your choice. The general command to run the Importer/Exporter from a shell environment (or

a shell script) is shown below. If required, please replace the version number in the file name

with your current version.

 java -jar lib/impexp-client-4.1.0.jar [-options]

This command consists of two parts. The first part executes the Java Virtual Machine (JVM)

through the java command. The -jar argument of the JVM is used to denote the path to

the Importer/Exporter JAR file impexp-client-4.1.0.jar to be executed. After the

JAR filename, you must provide additional program arguments to trigger a specific operation

of the Importer/Exporter.

3D Geodatabase for CityGML 2019 239

Note: The above command assumes that you have first changed directory to the directory

where the Importer/Exporter is installed. Otherwise, you must provide the full path to

the impexp-client-4.1.0.jar file.

You may add any further JVM arguments to the above command that you think are required

in your environment. It is recommended to at least start the JVM with a minimum amount of

main memory using the -Xms argument. For instance, use java -Xms 1g to use 1 GB of

your main memory for the Importer/Exporter.

To get a list of program arguments offered by the Importer/Exporter, use the -help flag and

issue the following command:

 java -jar lib/impexp-client-4.1.0.jar -help

This will produce an output like shown below.

Figure 127: Help text of the command line interface.

The available program arguments are:

-shell This argument is mandatory to start the shell version of the

Importer/Exporter. If this argument is not provided, then the

GUI version is launched per default.

-config Provides the path and filename of the config file to be used. If

this argument is omitted, the config file in the default path is

used instead. Using environment variables, the default path can

be identified dynamically (cf. chapter 5.1):

 %HOMEDRIVE%%HOMEPATH%\3dcitydb\

importer-exporter\config

(Windows 7 and higher)

 $HOME/3dcitydb/importer-

240 3D Geodatabase for CityGML 2019

exporter/config (UNIX/Linux, Mac OS families)

-import Triggers a CityGML import process. Provide a list of one or

more input files separated by semicolons (;) in addition. The list

may also contain folders. A folder and all its nested subfolders

are recursively scanned for CityGML input files.

-validate Triggers a XML Schema validation on the provided list of input

files (see import argument).

-export Triggers a CityGML export process. Provide the path and name

of the output file.

-kmlExport Triggers a KML/COLLADA/glTF export process. Provide the

path and name of the output file.

-testConnection Connects to the database using the connection details provided

in the config file and exits afterwards. Evaluate the exit code

(and optionally the log messages on the console) to check

whether the connection was established successfully.

The full range of preferences and settings affecting the different import and export operations

of the Importer/Exporter are not offered as separate program arguments. Instead, it is

assumed that the config file (either the default one or the one provided through the -config

argument) contains all the settings that should be used in a specific operation (e.g., the

database connection details, filter settings for imports and exports, etc.). The config file is

encoded as XML and hence can be edited by a user manually. However, the recommended

way to provide valid settings is as follows:

1. Run the Importer/Exporter with the graphical user interface (GUI).

2. Make all your settings in the GUI.

3. Save your settings to a local config file via the Project Save Project

As… dialog from the main menu bar.

4. Feed this config file to the command line interface using the -config argument.

Note: You can also create a config file programmatically in Java. The JAR file impexp-

config-4.1.0.jar in the installation directory of the Importer/Exporter

contains all the classes required for reading and writing a config file. Once you have

the JAR file on your classpath, use the class

org.citydb.config.ConfigUtil as starting point.

3D Geodatabase for CityGML 2019 241

6 Importer / Exporter plugins

6.1 Introduction to the plugin architecture

The Importer/Exporter offers a plugin architecture that supports the modular development and

deployment of additional functionalities for interacting with the 3D City Database or external

datasets. For instance, plugins may enable loading or extracting 3D city model content using

data formats other than CityGML or KML/COLLADA/glTF. Plugins are self-contained

extensions in that one plugin cannot extend the functionality of another plugin. Therefore,

plugins can be added separately to the Importer/Exporter without interdependencies.

A plugin may extend the GUI of the Importer/Exporter by providing its own user dialog that

will be rendered in a separate tab on the operations window. In addition, a plugin may add

new entries to the main menu bar and the preferences dialog. To remember the preference

settings at program startup, a plugin can choose to serialize the settings to the main config file

or a plugin-specific config file. Please refer to the plugin documentation of your vendor for

more information.

Plugin installation is simple. Just get the plugin from your vendor and put all plugin files into

the plugins subfolder of the Importer/Exporter installation directory. To keep multiple

plugins independent from each other, it is recommended to create a separate subfolder below

plugins for each plugin. When running the Importer/Exporter, the installed plugins are

automatically detected and loaded with the application.

The current version of the Importer/Exporter is shipped with two free and open-source plugins

that can be installed during the setup process (see chapter 3.2). The Spreadsheet Generator

Plugin allows for exporting attributes of city objects as spreadsheets with user-defined

formatting, either to a CSV or a Microsoft Excel file (see chapter 6.2). The ADE Manager

Plugin automatically transforms CityGML ADEs to relational schemas extending the

3DCityDB schema and un-/registers such ADE schemas with existing 3DCityDB instances.

You can also develop your own plugins. For this purpose, the Importer/Exporter comes with a

Plugin API that is available as separate JAR file impexp-plugin-api-4.1.0.jar.

Simply put the JAR file on your classpath to start plugin development. A comprehensive

Plugin API guide will be offered on the www.3dcitydb.org website soon. Moreover, the

source codes of the Spreadsheet Generator Plugin and ADE Manager Plugin can be used as

templates for your own developments.

http://www.3dcitydb.org/

242 3D Geodatabase for CityGML 2019

6.2 Spreadsheet Generator Plugin (SPSHG)

 Definition
By using the SPSHG (Spreadsheet Generator) plugin, it is possible to export data from a 3D

City Database (3DCityDB) instance into a CSV or a Microsoft Excel file. Both types of files

can be opened using a spreadsheet application (like Microsoft Excel or Open Office Calc) as

well as uploaded to a web based online spreadsheet service (like Google Docs). All features

of spreadsheet programs, like calculation and graphing tools, are applicable to the exported

data from a 3D City Database instance.

 Plugin installation
The SPSHG is an additional component which can be installed together with the 3DCityDB

Importer/Exporter tool. During the Installation of the Import/Export tool, the wizard will ask

you if you want to install Spreadsheet Generator Plugin like in the following figure:

Figure 128: Installation wizard of the Import/Export tool

If you haven’t checked the “Spreadsheet Generator Plugin” box during the installation

process, it is also possible to install the SPSHG later. Following simple steps will guide you

through the install process:

 Download the SPSHG plugin zip file from the official website of the 3D City

Database at [www.3dcitydb.org].

 Open the folder that contains your locally installed instance of the

Importer/Exporter version 3.3.0 (the installation directory).

 Open the plugins subfolder. If it is not available, create a new subfolder and name it

“plugins”.

3D Geodatabase for CityGML 2019 243

 Extract the downloaded SPSHG plugin zip file in the plugins folder. As a result a

new folder named spreadsheet_Generator will be created. The

spreadsheet_Generator folder will contain all required files and subfolders.

 Run the Importer/Exporter. The SPSHG plugin tab should be visible like in the

following figure.

Figure 129: The SPSHG plugin tab allowing for exporting from the 3DCityDB to a spreadsheet.

 User Interface

6.2.3.1 Main Parameters

The SPSHG plugin GUI is divided into three main parts. The upper part, titled Columns,

refers to the columns of the output spreadsheet file. The Content Source in the middle section

refers to the rows of the output spreadsheet. Each output row will always contain the GMLID

of a city object and its corresponding selected values for each column. A list of the feature

classes of city objects (Top-level features) whose data will be exported to the spreadsheet, the

versioning information of the database and a geographic bounding box should be specified.

244 3D Geodatabase for CityGML 2019

The file path and the file format for the exported data must be specified in the lower part. All

input data fields of the SPSHG plugin tab will be now described in more detail.

6.2.3.2 Columns

First of all, the columns of your resulting spreadsheet should be defined. You can choose to

load a template file or manually create a new one:

Load a template file: type the template file’s path directly into the text field or click on the

Browse button to use an Open dialog for selecting the template file. The selected template file

can be edited by clicking on the Edit button.

Figure 130: The part for manually creating a new template will appear when clicking on the New button. This

part will also be shown when clicking on the Edit button after a template file is selected.

Create a new template: click on the New button to access the part for creating a template

(marked in Figure 130). To add a new column click on the Add button and fill all necessary

fields of the New Column dialog (cf. Figure 131). A column contains a title, content and

comment. The comment field is optional. Each row in the exported data will begin with the

3D Geodatabase for CityGML 2019 245

GMLID of the corresponding city object. It will be followed by the adapted value of each

column for that city object (see next section for more information). Created columns will be

listed in the table. You can use the Remove, Edit, Up (▲), and Down (▼) buttons to modify

listed columns on the table and their order. By pressing the Save button, manually created (or

adapted) templates will be saved in a text file. Path will be specified by the Save dialog.

Figure 131: The New Column dialog. Fill the Column’s title, Column’s content fields and click on the Insert

Column button to add it to the list of columns. The Comment field is optional. When written to a template file its

content serves informational purposes only.

New Column dialog

By clicking on the Add button the New Column dialog will be shown (Figure 131). Using the

New Column dialog, it is possible to define a new column for the output spreadsheet. A

column may contain a title, content and comment fields. The title and content are mandatory.

During export time, the content of each column will be adapted for each city object. For each

specific column:

 The content may set to be a static value, e.g. “Munich”. As a result, the value of that

column in the exported spreadsheet will be equal to the specified static value (in this

example “Munich”) for all rows.

246 3D Geodatabase for CityGML 2019

 The content of a column may be specified by an expression. The main part of an

expression refers to a column in a specific table of a 3D City Database. Each row

refers to one city object. Consequently, the value of the spreadsheet’s column will be

dynamically adapted for each row at export time. It means that the value of the

spreadsheet’s column for a specific row will be equal to the value of that expression

for the corresponding city object of that row. Expressions must follow specific rules.

They can be added simply by using the GUI or written by hand.

 The content of a spreadsheet’s column may contain a combination of static values and

expressions.

Rules for Column’s Content field

 Expressions are coded in the following form:

"TABLE/[AGGREGATION FUNCTION] COLUMN [CONDITION]".

Aggregation function and condition are optional. Table refers to the underlying

3DCityDB table structure (see Chapter 2.3 for more details).

 Expressions are not case-sensitive.

 For each row of output, each expression will only return the value of those entries

relevant to the city object for that row. That means an implicit condition clause like

"TABLE.CITYOBJECT_ID = CITYOBJECT.ID" is always considered and does not

need to be explicitly written.

 In a case that more than one entry for the corresponding city object are available, a

comma separated list of values will be returned. When only interested in the first

result of a list the aggregation function FIRST should be used. Other possible

aggregation functions are LAST, MAX, MIN, AVG, SUM and COUNT.

 Conditions can be defined by a simple number (meaning which element from the

result list must be taken) or a column name (that must exist in underlying 3DCityDB

table structure) a comparison operator and a value. For instance: [12] or [NAME =

'abc'].

 Invalid results will be silently discarded

 Multiline content is supported. Use "[EOL]" to start a new line in the same column.

How to use the New Column dialog

Title and content of each column should be specified. On the left hand side of the New

Column dialog, tables of the 3D City Database and their columns are displayed in a tree

structure. Adding an expression is simple. Select a column in a table from the left hand side

tree and click on the “>” button. In the case that aggregation functions are needed, select a

column from the left hand side tree and click on the f(x) button then chose one of the

aggregation functions. As a result of both cases a corresponding expression will be added into

the column’s content in the right hand side.

3D Geodatabase for CityGML 2019 247

A column’s content can be several lines long. Write “[EOL]” text in the column’s content

wherever a new line should be started. You can also press the EOL button to automatically

add “[EOL]” text to the content. During export time, the “[EOL]” text will be replaced by a

new line.

After filling all necessary fields click on the Insert Column button. A new column will be

created and added to the manually created template.

Examples for Column’s Content

ADDRESS/STREET

Returns the content of the STREET column on the ADDRESS table for each city

object. For instance:

Straße des 17. Juni

However ADDRESS table might contain more than one row for some city objects. In

such a case a comma separated list of values will be returned. For instance:

Straße des 17. Juni, Straße des 17. Juni, Straße des 17. Juni, Straße des 17. Juni

To avoid that use a proper aggregation function. For instance:

ADDRESS/[FIRST]STREET

Although the ADDRESS table may contain several entries for a city object, result of

the above expression will be equal to the street name of first found entry.

ADDRESS/[FIRST]STREET, ADDRESS/[FIRST]HOUSE_NUMBER
[EOL]ADDRESS/[FIRST]ZIP_CODE ADDRESS/[FIRST]CITY

Returns the full address of each city object in two lines. For instance:

Straße des 17. Juni, 135

10623 Berlin

CITYOBJECT_GENERICATTRIB/ATTRNAME

Returns the names of all existing generic attributes for each city object. All names will

be separated by commas.

CITYOBJECT_GENERICATTRIB/REALVAL[ATTRNAME = 'SOLAR_SUM_INVEST']EUR

Returns the content of the REALVAL column of all existing generic attributes for

each city object whose ATTRNAME is equal to 'SOLAR_SUM_INVEST'. The

number will be followed by “EUR”. For instance:

23000EUR

Rules for Columns’ Template file

Rules for the template file are simple. A template file contains a list of columns and their

description. It may be edited by hand or by saving a manually created template.

248 3D Geodatabase for CityGML 2019

 A template file is a plain-text file.

 Each row of a template file may describe a column or be a comment.

 Comment rows MUST start with the character “//” ;

 A column should be specified in one of following forms:

o [Title]:[Content]

[Title] is the column’s title and [content] is the column’s content. In this

case, [Title] is specified by the user.

o [Content]

In this case, the column’s title is not specified by the user. The SPSHG plugin

will internally automatically generate a column’s title by means of the

column’s content

Example for Template File

Sample template file:

// This is a template file for the export of tabular data.

// Lines starting with // or ; are comments and will be ignored.

Street:ADDRESS/[FIRST]STREET

Houseno:ADDRESS/[FIRST]HOUSE_NUMBER

City:ADDRESS/[FIRST]CITY

Address:ADDRESS/[FIRST]STREET,

ADDRESS/[FIRST]HOUSE_NUMBER[EOL]ADDRESS/[FIRST]CITY

// INVEST

Investment:CITYOBJECT_GENERICATTRIB/REALVAL[ATTRNAME =

'SOLAR_SUM_INVEST'] EUR

Figure 132 shows a sample export result.

Figure 132: Example of exported data based on sample template presented above from a 3D City Database

instance.

3D Geodatabase for CityGML 2019 249

6.2.3.3 Content Source

In this GUI section, the feature class of city objects and their origin (versioning information

and geographic bounding box) should be specified.

Feature Classes

City objects of the selected feature class(es) will be exported. Click on the edit button

(marked by 1 in Figure 133) to insert or remove a feature class.

Versioning

Oracle's Workspace Manager enables storing of different versions of the database as named

workspaces. The export process will use the specified workspace.

If version management is disabled or the current state of the database should be exported, the

default workspace name LIVE must be entered and the timestamp field must remain empty.

Unfortunately, as PostgreSQL does not officially offer any equivalent facility like Workspace

Manager, the corresponding elements in the graphical user interface will be disabled

whenever the PostgreSQL/PostGIS database instance is connected.

Figure 133: Click on the edit button (marked by 1) to add or remove a CityGML feature class from the list of

features classes (marked by 2).

Bounding Box

Use the bounding box section to select an area of interest from which the selected features

contained should be exported. Insert lower left and upper right coordinates of the bounding

box or click on the map button to select the area from a map. Please refer to [Chapter 5.2.2]

for more details on the different options for specifying a bounding box.

6.2.3.4 Output

It is possible to export the data in a CSV or XLSX file on the local computer, or directly into

an online spreadsheet hosted in a cloud service.

2

1

250 3D Geodatabase for CityGML 2019

CSV/XLSX File

A CSV/XLSX file is supported by most spreadsheet applications. It can be easily imported

into a local spreadsheet processing program like Microsoft Excel and Open Office Calc or to a

web based online spreadsheet service like Google Docs.

Click on the CSV File or XLSX file radio button, and write an output file path or select an

output file by clicking on the Browse button. It is also possible to specify another separator

character(s) instead of comma (default) for CSV file. Write any arbitrary separator phrase or

click on the edit button (marked by 1 in Figure 134) to select it from a list.

Figure 134: Click on the CSV File radio button and write any output file path or click on the Browse button to

select an output file. Type the separator character (s) or click on the edit button (marked by 1) and select one

from a list.

Note: Starting from April 2015, the earlier versions of the SPSHG plugin are no longer able

to directly upload the exported data to the Google cloud service, since the Google

OAuth 1.0 API on which the SPSHG plugin relies has been deprecated and is not

supported by Google any more. Therefore, starting from version 3.3.0 of the

3DCityDB, the functionality “Directly into the Cloud” has been removed from the

SPSHG plugin, and you need to to manually upload the generated CSV/XLSX files

to the cloud.

Example: Uploading XLSX file to Google Fusion Table

Here is a step-by-step guide for uploading a XLSX file to the Google Fusion Tables which a

cloud-based web application that allows for storing, showing, and sharing large data tables.

 Open a web browser (you can use, for example, Google Chrome or Mozilla Firefox, but

we recommend not to use Microsoft Internet Explorer) and type the following address into

the address bar.

https://www.google.com/fusiontables/data?dsrcid=implicit

When you go to this page, you will be asked to log in by using your Google account.

 Enter your Email address and the password of your Google account into the corresponding

input fields

1

https://www.google.com/fusiontables/data?dsrcid=implicit

3D Geodatabase for CityGML 2019 251

After logging in, an Import new table dialog window will be displayed like in the screenshot

below:

 Click the Choose File button to open a file selection window

 Navigate to the system path of your created Excel file and select it. The following

screenshot show an example Excel file.

 After selecting the Excel file, click the Next button to continue

252 3D Geodatabase for CityGML 2019

The contents of the selected table is displayed in the dialog window (see the screenshot

below)

 Briefly check the table contents again and then click the Next button

 In the following dialog window (see the screenshot below), enter a table name (for example

“Berlin_Buildings_Attributes”) into the input field Table name and click the Finish button

3D Geodatabase for CityGML 2019 253

Now, your Excel file has been successfully uploaded to the Google Cloud Service and a

Google Fusion Table instance has been created (see the screenshot below).

We would like to share our created online spreadsheet with other people. Here we need to

change the sharing settings of the Google Fusion Table by completing the following steps:

 Choose the File Share… from the menu bar at the top of the online spreadsheet window

In the Sharing settings window, click on Change… button (see the screenshot below)

254 3D Geodatabase for CityGML 2019

 In the Link sharing window (see the figure below), choose the second radio button On –

Anyone with the link

3D Geodatabase for CityGML 2019 255

 Click the Save button to save the settings and close the share settings window

Now, the spreadsheet is being shared and can be accessed by anybody who has its URL that

can be easily obtained from the address bar of the web browser (marked in the screenshot

below). With this URL and the first column (GMLID) in the table, the attribute information

stored in the spreadsheet are able to be queried and displayed on the 3DCityDB-Web-Map-

Client when a city object is clicked on (see chapter 8 for more details).

256 3D Geodatabase for CityGML 2019

6.3 ADE Manager Plugin

 Definition

The ADE Manager is a plugin for the 3D City Database Importer/Exporter and allows to

dynamically extend a 3D City Database (3DCityDB) instance to facilitate the storage and

management of CityGML Application Domain Extensions (ADE). It is implemented based on

the Open Source Attributed Graph Grammar (AGG)5 transformation engine for realizing the

automatic transformation from an XML application schema (XSD) to a compact relational

database schema (including tables, indexes, and constraints etc.) for a given CityGML ADE.

In addition, an XML-based schema mapping file can also be automatically generated which

contains the relevant meta-information about the derived database schema as well as the

explicit mapping relationships between the source and target schemas and allows developers

to implement applications for managing and processing the ADE data contents stored in a

3DCityDB instance.

 Plugin installation

Like with the Spreadsheet Generator Plugin, the ADE manager plugin can also be optionally

installed together with the 3DCityDB Import/Export tool. During the Installation of the

Import/Export tool, the wizard will ask you if you want to install the ADE Manager Plugin

(cf. the following figure):

Figure 135: GUI wizard for prompting the installation of ADE Manager Plugin

5 http://www.user.tu-berlin.de/o.runge/agg/

http://www.user.tu-berlin.de/o.runge/agg/

3D Geodatabase for CityGML 2019 257

If the users haven’t checked the “ADE Manager Plugin” box during the installation process, it

is also possible to install the plugin later. The installation steps are very similar to those

operation steps for installing the Spreadsheet Generator Plugin. For more details, please refer

to the section 6.2.2. Once the Import/Export tool and ADE Manager Plugin have been

successfully installed, the user interface of the ADE Manager Plugin should look like the

figure below:

Figure 136: User interface of the ADE Manager Plugin

258 3D Geodatabase for CityGML 2019

 User Interface

6.3.3.1 ADE Registration

The user interface of the ADE Manager Plugin is composed of two parts. The first part is

mainly used for registering CityGML ADEs into a 3DCityDB database instance. During the

ADE registration process, new ADE-specific database objects such as feature tables, foreign

key contstraints, sequences, simple and spatial indexes are added to the existing 3DCityDB

database schema. Also, the metatdata tables (cf. chapter 2.3.3.1) are populated with the meta-

information about the registered ADE. To run the ADE registration process, the input files

required by the ADE Manager Plugin must be strictly organized according to the following

folder structure.

Figure 137: Specific folder structure of the input files required by ADE Manager plugin for ADE registration

The input folder must comprise at least two mandatory subfolders namely 3dcitydb and

schema-mapping. The first subfolder 3dcitydb further contains two subfolders oracle and

postgresql, which contain the SQL definition file CREATE_ADE_DB.sql. This file can be

excuted by the ADE Manager Plugin for creating the 3DCityDB-compliant ADE database

schema according to the database type (Oracle or PostgreSQL) being used. The SQL file

DROP_ADE_DB.sql contains the DDL-statements for removing the corresponding ADE

database schema. These DDL-statements are imported into the metadata table ADE during the

ADE registration process and hence are persistently stored at the database side. When

unregistering an ADE, the DDL-statements will be read from the table ADE and excuted by

the ADE Manager Plugin.

The second subfolder schema-mapping shall contain an XML-formatted file which holds the

relevant meta-information (e.g. name, description, XML namespace, and value range of

object class id etc.) about an ADE as well as the explicit mapping information between the

XML application schema and relational database schema. This schema-mapping file is not

only used for the ADE registration purpose but also required for the Importer/Exporter and

WFS tools to control the query and transaction of ADE datasets. The Importer/Exporter also

uses a schema-mapping file for mapping the elements of the CityGML XML schemas to

tables and columns of the 3DCityDB core schema. This mapping file, its XML Schema

3D Geodatabase for CityGML 2019 259

definition as well as a Java API for reading and writing a valid schema-mapping files can be

found in the Github repository6.

Example: Registration of a Test ADE

The TestADE is an artificial CityGML ADE which is intended to be used for testing and

demonstrating how to use the citygml4j and 3DCityDB software APIs to implement

3DCityDB-compilant applications for working with the real-world ADEs. The TestADE has

been designed to reflect the most typical modelling structures offered by the CityGML ADE

mechanism such as subtyping or property injection. Moreover, the contained feature and data

types have been copied (and simplified) from existing CityGML ADEs such as the Energy

ADE and the UtilityNetwork ADE. A central repository containing the TestADE’s UML data

model, XML schema definition file, database schema, schema-mapping file as well as the

Java classes for reading and writing ADE datasets is hosted in the 3DCityDB’s Github

website7.

The input SQL and schema-mapping files for ADE registration are located under the relative

path “extension-test-ade/test-ade-citydb/resources” of the TestADE’s Github repository. After

opening the ADE Manager Plugin, the users can click on the Browse button to open a file

chooser dialog for providing the local path of the input folder. After connecting to the target

3DCityDB instance, the ADE registration process can be started by clicking on the Register

ADE button.

Figure 138: Dialog panel for registering CityGML ADEs

While performing the ADE registration process, the ADE database schema will be firstly

created, and the metadata information will be written to the 3DCityDB metadata tables

subsequently. In addition, the database stored functions and procedures e.g. DELETE script

and ENVELOPE script will also be newly generated. After the ADE has been successfully

6 https://github.com/3dcitydb/importer-exporter/tree/master/impexp-

core/src/main/java/org/citydb/database/schema

https://github.com/3dcitydb/importer-exporter/tree/master/impexp-

core/src/main/resources/org/citydb/database/schema
7 https://github.com/3dcitydb/extension-test-ade

https://github.com/3dcitydb/importer-exporter/tree/master/impexp-core/src/main/java/org/citydb/database/schema
https://github.com/3dcitydb/importer-exporter/tree/master/impexp-core/src/main/java/org/citydb/database/schema
https://github.com/3dcitydb/importer-exporter/tree/master/impexp-core/src/main/resources/org/citydb/database/schema
https://github.com/3dcitydb/importer-exporter/tree/master/impexp-core/src/main/resources/org/citydb/database/schema
https://github.com/3dcitydb/extension-test-ade

260 3D Geodatabase for CityGML 2019

registered, a list of all ADEs registered in the 3DCityDB instance along with their relevant

meta-information is shown on the ADE information panel (cf. the following figure).

Figure 139: GUI panel for displaying the relevant meta-information of all the registered ADEs

The users may also use a database client application like pgAdmin (PostgreSQL) and

SQLDeveloper (Oracle) to check whether the ADE database schema has been correctly

created. All new tables should be prefixed with the characters “test_” and the new delete and

envelope functions/procedures should have the prefix “del_test_” and “env_test_”

respectively.

Figure 140: Exploration of the newly created ADE tables using pgAdmin

When connecting to another 3DCityDB instance, the users may click on the Fetch ADEs

button to update the contents in the meta-information panel and thus to check which ADEs

have already been registered into the target database. The Generate Delete-Script and

Generate Envelope-Script buttons allow to generate the respective database stored

functions/procedures again and display them in a popup dialog window. It is possible to

install the script directly by clicking on the the Install button or save it to a SQL file. This

gives the developers the possibility to modify the script functions and to install them via the

database client applications e.g. pgAdmin and SQLDeveloper.

3D Geodatabase for CityGML 2019 261

Figure 141: Dialog window for showing and installing newly generated database stored functions/procedures

6.3.3.2 ADE Transformation

The second part of the ADE Manager Plugin offers the functionality to read an ADE’s XML

application schema definition file and automatically generate the database schema and XML

schema-mapping files according to the specific folder structure required for the ADE

registration. However, a notable issue is that some relevant meta-information about an ADE

are usually missing in its XML schema, since they cannot be encoded using the native syntax

of the XML schema and will be lost while deriving the XML schema from its ADE’s UML

model (e.g. when using a transformation tool like ‘ShapeChange’8). Moreover, some certain

kinds of meta-information can even not be represented in the UML model. A good model-

driven solution for solving this issue is to extend the UML model by adding a few specific

taggedValues (cf. the table below) which can be automatically translated and encoded into the

<xs:annotation> elements in XML schema.

1. Top-level feature classes

taggedValue topLevel (true | false)

Description This taggedValue allows for determining whether an ADE feature class is top-
level or not

Example
Of using
<xs:annotation>
in XML-Schema

<element name="IndustrialBuilding"
substitutionGroup="bldg:_AbstractBuilding"
type="TestADE:IndustrialBuildingType">
 <annotation>
 <appinfo>
 <taggedValue xmlns="http://www.interactive-
instruments.de/ShapeChange/AppInfo" tag="topLevel">true</taggedValue>
 </appinfo>
 </annotation>
</element>

8 https://shapechange.net/

https://shapechange.net/

262 3D Geodatabase for CityGML 2019

2. Muliplicity of ADE Hook Properties

taggedValue minOccurs und maxOccurs (Integer value | „unbounded")

Description The combiniation of the two taggedValues allows for determining the
multiplicity information of each ADE hook property. In UML model, this
multiplicity information can be explicitly specified but it is lost in the XML
schema, because every ADE hook property is hard-encoded with a multiplicity of
[0..*] in the XML schema. Since the current version (2.5.1) of the ShapeChange
tool is still not able to read the multiplicity of the hook properties from the UML
model directly, the two taggedValues are hence required although they provide
the redundant multiplicity information in UML model

Example
Of using
<xs:annotation>
in XML-Schema

<element name="ownerName"
substitutionGroup="bldg:_GenericApplicationPropertyOfAbstractBuilding"
type="string">
 <annotation>
 <appinfo>
 <taggedValue xmlns="http://www.interactive-
instruments.de/ShapeChange/AppInfo" tag="maxOccurs">1</taggedValue>
 </appinfo>
 </annotation>
</element>

3. Relationship type between classes

taggedValue relationType (association |aggregation | composition)

Description An enumeration attribute allowing to distinguish the three relationships
between two associated classes. This meta-information is also lost while
mapping UML -> XML schema, because the XML schema doesn’t support the
distinguishment between the three relation types. This taggedValue is also
redundant from the view of UML, but required when using ShapeChange

Example
Of using
xs:annotation
in XML-Schema

<element maxOccurs="unbounded" minOccurs="0" name="boundedBy"
type="bldg:BoundarySurfacePropertyType">
 <annotation>
 <appinfo>
 <taggedValue xmlns="http://www.interactive-
instruments.de/ShapeChange/AppInfo"
tag="relationType">composition</taggedValue>
 </appinfo>
 </annotation>
</element>

The realization of the model transformation process is mainly based on the concept of “Graph

Transformation” and implemented using the Open Source graph transformation engine AGG.

It comes with a graphical editor (a runnable jar file AggV21Build.jar in the folder lib) that

allows users to define an arbitrary number of graph-structured transformation rules for

mapping complex object-oriented models onto a compact relational database models (cf. [Yao

& Kolbe 2017]). While developing the ADE Manager Plugin, around 50 mapping rules have

been designed, which can also be modified by developers for customizing the model

transformation behaviour. The workspace file containing the transformation rules is located

under “/src/main/resources/org/citydb/plugins/ade_manager/graph/Working_Graph.ggx” and

can be opened using the AGG editor. Using the predefined mapping rules we were able to

correctly transform all well-known CityGML ADEs like the Energy ADE, Noise ADE,

UtilityNetwork ADE, Dynamizer ADE, IMGeo3D and further custom ADEs to compact

relational schemas. In the future, for some ADEs we may publish complete ADE packages on

the 3DCityDB github pages as Open Source. Some will be commercially available from the

3DCityDB development partners.

3D Geodatabase for CityGML 2019 263

Figure 142: AGG graph editor for defining model transformation rules for the ADE Manager Plugin

Example: Transformation of the TestADE

The XML schema definition file of the TestADE is located under the path “test-ade-

citygml4j\src\main\resources\org\citygml\ade\test\schema\CityGML-TestADE.xsd”. It can be

selected or entered using a file chooser dialog window by clicking on the Browse button in the

input panel (cf. [1] in Figure 143). After entering the path of the XML schema and clicking on

the button Read XML Schema, the XML schema file will be read and parsed. All namespaces

(except the GML and CityGML namespaces) included in the the XML schema file will be

listed on the left panel [2]. The namespace “http://www.citygml.org/ade/TestADE/1.0” of the

target ADE shall be selected and its background will be highlighted with blue color. In the

next step, some additional relevant meta-information for the ADE must be specified in the

panel (see [3] in Figure 143) and will be written into the output schema-mapping file. More

details about the meaning of the individual metadata attribute are described in the section

2.3.3.1. In the last step, the path for the output files should be specified and the Transform

button can be clicked to start the transformation process.

The entire transformation process should take just a few seconds, since the TestADE has a

rather simple structure with only 10 classes and data types. The output files are exactly

organized according to the specific folder structure described in the section 6.3.3.1. A full

example of the output files is located under the path “test-ade-citydb\resources” which can be

directly used as the input folder for performing the ADE registration into a 3DCityDB

instance.

264 3D Geodatabase for CityGML 2019

Figure 143: GUI panel for transforming XML schema to 3DCityDB database schema and schema-mapping file

 Workflow of extending the Import/Export Tool

Once an ADE has been successfully registered into an 3DCityDB instance, the Import/Export

tool must be manually extended to support the import and export of the ADE datasets. The

Import/Export tool provides a specific Java API that allows developers to implement the

ADE-specific Import/Export-extensions based on a simple plugin mechnism. An example of

how to implement such Java extensions for the TestADE can be found in the Github

repository. In the following, a brief guide about operating the Import/Export tool with ADE

extensions is presented.

 Create a folder named “ade-extensions” in the installation directory of the Import/Export

tool, if the folder does not exist.

 Download the latest version of the TestADE’s Java extension, database schema, and

schema-mapping file from the Github website: https://github.com/3dcitydb/extension-test-

ade/releases

 Unpack the zip file to a folder e.g. named “extension-test-ade” which shall contain three

subfolders 3dcitydb, lib, and schema-mapping.

 Copy the extension-test-ade folder into the ade-extension folder. The folder structure

should look like below.

1

2 3

4

https://github.com/3dcitydb/extension-test-ade/releases
https://github.com/3dcitydb/extension-test-ade/releases

3D Geodatabase for CityGML 2019 265

Figure 144: Folder structure of the Import/Export tool with ADE extensions

 Start the Import/Export tool. The JAR files in the extension-test-ade/lib folder along with

the schema-mapping file in the extension-test-ade/schema-mapping will be automatically

loaded by the Import/Export tool.

 Connect to an empty 3DCityDB instance. This database could be named as “TestADE”

and its coordinate reference system can be defined with SRID = 31468

 Open the tab panel Database Database operations ADEs to check whether the

ADE-extensions for Import/Export tool is successfully installed.

The screenshot below shows that the Import/Export tool is now enabled for supporting the

TestADE, while the connected 3DCityDB instance is still not. Therefore, the next step is to

use the ADE Manager plugin to complete the ADE registration and database schema creation.

266 3D Geodatabase for CityGML 2019

Figure 145: User interface for checking the status of ADE support of database and Import/Export tool

 Activate the ADE Manager Plugin and follow the operation steps described in the section

6.3.3.1.

 Reconnect the TestADE database again. The ADE status panel should be updated like the

figure below.

Figure 146: Status indicating the full support of database and Import/Export tool

 To test the Import/Export function, open the Import panel and the select the ADE datasets

which are located under the path “resources\datasets\”

3D Geodatabase for CityGML 2019 267

It is possible to use the filter options of the CityGML import panel to import a subset of the

ADE datasets. For example, if the the Feature classes filter is used (cf. the figure below),

only TestADE feature objects will be imported.

Figure 147: Import of ADE dataset using Feature Class filter

A summary of the ADE import process is printed in the console window like the following

screenshot:

268 3D Geodatabase for CityGML 2019

Figure 148: Console window displaying the summary of the ADE import process

 Activate the Database panel and activate the Database report subpanel.

 Click on the Generate database report button to generate a statistic of the data contents

stored in the ADE tables.

Figure 149: Console window showing a statistic of the ADE tables

The operation steps for performing ADE export are very similar to those for the ADE import.

 Activate the Export panel and configure the filter options e.g. activate the Feature class

filter and choose the “TestADE”

3D Geodatabase for CityGML 2019 269

 Click on the Export button to start the export process. The export configuration and a

summary of the ADE export process is shown in the figure below:

Figure 150: Console window showing a summary of ADE export

270 3D Geodatabase for CityGML 2019

3D Geodatabase for CityGML 2019 271

7 Web Feature Service

The OGC Web Feature Service Interface Standard (WFS) provides a standardized and open

interface for requesting geographic features across the web using platform-independent calls.

Rather than sharing geographic information at the file level, for example, the WFS offers

direct fine-grained access to geographic information at the feature and feature property level.

Web feature services allow clients to only retrieve or modify the data they are seeking, rather

than retrieving a file that contains the data they are seeking and possibly much more.

The 3D City Database offers a Web Feature Service interface allowing web-based access to

the 3D city objects stored in the database. WFS clients can directly connect to this interface

and retrieve 3D content for a wide variety of purposes. Thus, users of the 3D City Database

are no longer limited to using the Importer/Exporter tool for data retrieval. The WFS interface

is platform-independent and database-independent, and therefore can be easily used to build

CityGML-aware applications.

The 3D City Database WFS interface is implemented against the latest version 2.0 of the

OGC Web Feature Service standard (OGC Doc. No. 09-025r2) and hence is compliant with

ISO 19142:2010. Previous versions of the WFS standard are not supported though. The

implementation currently satisfies the Simple WFS conformance class. The development of

the WFS is led by the company virtualcitySYSTEMS GmbH, Berlin, which offers an extended

version of the WFS with additional functionalities that go beyond the Simple WFS class (e.g.,

thematic and spatial filter capabilities and transaction support). This additional functionality

may be fed back to the open source project in future releases.

The 3D City Database Web Feature Service is free software under the

Apache License, Version 2.0. See the LICENSE.txt file shipped with the

software for more details. For a copy of the Apache License, Version 2.0, please visit

http://www.apache.org/licenses/.

7.1 System requirements

The 3D City Database WFS is implemented as Java web application based on the Java

Servlet technology. It therefore must be run in a Java servlet container on a web server. The

following minimum software requirements have to be met:

 Java servlet container supporting the Java Servlet 3.1 / 3.0 (or higher)

specification

 Java 8 Runtime Environment (Java 7 or earlier versions are not supported)

The WFS implementation has been successfully deployed and tested on Apache Tomcat 9

(http://tomcat.apache.org/). This is also the recommended servlet container. Apache Tomcat 8

and 7 are also supported, whereas any previous version of the Apache Tomcat server will not

work.

Note: Neither Java nor a servlet container are part of the WFS distribution package and

therefore must be properly installed and configured before deploying the WFS.

http://www.apache.org/licenses/
http://tomcat.apache.org/

272 3D Geodatabase for CityGML 2019

Please refer to the documentation of your favorite servlet container for more

information.

Hardware requirements for the web server running the WFS depend on the intended use and

number of concurrent accesses. There are no minimum requirements to be met, so make sure

your system setup meets your needs. Also note that the WFS does not provide its own

security layer (e.g., to limit access to specific networks or users). So, it is your responsibility

to take any reasonable physical, technical and administrative measures to secure the WFS

service and the access to the 3D City Database.

WFS clients connecting to the WFS interface of the 3D City Database must support the OGC

WFS standard version 2.0. Moreover, they should be capable of consuming 3D data encoded

in CityGML, which is the default data format delivered by the WFS server.

7.2 Installation

The 3D City Database WFS is shipped as a Java WAR (web archive) file. Please download

the WFS distribution package from http://www.3dcitydb.org/. Besides the WAR file, the

distribution package also contains Java libraries that render mandatory dependencies for the

WFS service and that must be installed as shared libraries in your servlet container.

Note: Alternatively, you may build your own WAR file from the source code provided on

GitHub (https://github.com/3dcitydb/web-feature-service). This requires that you are

experienced in building Java web applications from source using Gradle. No further

documentation is provided here.

Please follow the following installation steps:

Step 1: Install and properly configure your Java servlet container

Please refer to the documentation of your servlet container for hints on installation and

configuration. Make sure that the servlet container uses Java 8 (or higher) for running web

applications.

Step 2: Install the mandatory JAR libraries in your servlet container

The WFS service requires mandatory JAR libraries to be available in the servlet container.

This mainly comprises JDBC libraries for connecting to the database system running the 3D

City Database instance. The libraries are shipped with the distribution package. The list of

libraries will look like this:

 ojdbc8-18.3.0.0.jar (Oracle JDBC driver)

 postgresql-42.2.5.jar (PostgreSQL JDBC driver)

 postgis-jdbc-2.3.0.jar (PostGIS JDBC extension)

The libraries must be installed as shared libs or common libs (terminology may differ) in your

servlet container. For Apache Tomcat 7 (or higher), this simply means placing the JAR files

into the lib folder of the Tomcat installation directory. Afterwards, you need to restart

Tomcat. Please refer to the documentation of your servlet container for more information.

http://www.3dcitydb.org/
https://github.com/3dcitydb/web-feature-service

3D Geodatabase for CityGML 2019 273

Step 3: Deploy the WFS WAR file on your servlet container

If your servlet container is correctly set up and configured, simply deploy the WAR file to

install the WFS web service. Again, the way to deploy a WAR file varies for different servlet

containers. For Apache Tomcat servers, copy the WAR file into the webapps folder, which,

per default, is in the installation directory of the Apache Tomcat server. This will

automatically deploy the application. Alternatively, use the web-based Tomcat manager

application to deploy WAR files on the server. The manager application is included in a

default installation. For more information on deploying WAR files on Tomcat or different

servlet containers, please refer to the corresponding documentation material.

Note: If you use the automatic deployment feature of Tomcat as described above, the name

of the WAR file will be used as context path in the URL for accessing the

application. For example, if the WFS WAR file is named citydb-wfs.war, then

the context path of the WFS service will be

http://[host][:port]/citydb-wfs/. To pick a different context path,

simply rename the WAR file or change Tomcat’s default behavior.

Step 4: Configure your servlet container (optional)

Make sure that your servlet container has enough memory assigned (heap space ~ 1GB or

more).

Note: You may, for instance, use the Java command-line option -Xms for this purpose.

Step 5: Configure the WFS service

The WFS must be configured to meet your needs. For instance, this includes providing

connection details for the 3D City Database instance and the definition of the feature types

that shall be served through the interface. These settings must be manually edited in the

configuration file config.xml of the service. A graphical user dialog will be developed for

a future release. Please check the next chapter for how to configure the WFS.

Note: Changes to the config.xml file typically require a reload or restart of the WFS

web application (a restart of the servlet container itself is, of course, not required).

Please check to documentation of your favorite servlet container for how to do so. In

case of Apache Tomcat, you can simply use the manager application to reload web

applications.

Step 6: Install ADE extensions (optional)

As a last step, you may install additional CityGML ADE extensions for the WFS. This step is

optional and requires a compiled and ready-to-use ADE extension package. Simply copy the

contents of the ADE extension package to the WEB-INF/ade-extensions directory of

your deployed WFS application. The WEB-INF directory is typically located in the

application folder, which is generally named after the WAR file and itself is a subfolder of the

webapps folder in the Tomcat installation directory (see Figure 151).

Note: The CityGML ADE must also be registered in the 3DCityDB instance to which your

WFS service shall connect.

274 3D Geodatabase for CityGML 2019

7.3 Configuring the Web Feature Service

After deploying but before using the WFS service, you need to edit the config.xml file to

make the service run properly. The config.xml file is in the WEB-INF directory of the

WFS web application. The WEB-INF is a subfolder of the application folder, which is

generally named after the WAR file and itself is a subfolder of the webapps folder in the

Tomcat installation directory. This may be different if you use another servlet container.

For example, assume that the WFS web application was deployed under the context name

citydb-wfs. Then the location of the WEB-INF folder and the config.xml file in a

default Apache Tomcat installation is shown below.

Figure 151: Location of the WEB-INF folder and the config.xml file.

Open the config.xml file with a text or XML editor of your choice and manually edit the

settings. An XML Schema for validating the contents of the config.xml file is provided as

file config.xsd in the subfolder schemas. After every edit to the config.xml file,

make sure that the config.xml file validates against this schema before reloading the

WFS web application. Otherwise, the application might refuse to load, or unexpected

behavior may occur.

In the config.xml file, the WFS settings are organized into the main XML elements

<capabilities>, <featureTypes>, <operations>, <postProcessing>,

<database>, <server>, <uidCache>, <constraints>, and <logging>. The

discussion of the settings follows this organization in the subsequent clauses.

 Database settings
The database settings define the connection parameters for connecting to the 3D City

Database instance the WFS service should give access to. The contents of the <database>

element are shown below.

 <database>
 <connection

3D Geodatabase for CityGML 2019 275

 initialSize="10"
 maxActive="100"
 maxIdle="50"
 minIdle="0"
 suspectTimeout="60"
 timeBetweenEvictionRunsMillis="30000"
 minEvictableIdleTimeMillis="60000">
 <description/>
 <type>PostGIS</type>
 <server/>
 <port>5432</port>
 <sid/>
 <schema/>
 <user/>
 <password/>
 </connection>
 </database>

 Listing 1: Database settings in the WFS config.xml file.

Provide the type of the database (Oracle or PostGIS), the server name (network name or IP

address) and port number (default: 1521 for Oracle; 5432 for PostgreSQL) of the database

server, the sid (when using Oracle, enter the database SID or service name; for PostgreSQL

enter the database name), and the user and password of the database user. You can

copy&paste these settings from the config file of the Importer/Exporter. Use the optional

schema element if you want to connect to a schema other than the default schema. The

description is optional and can be left empty.

In addition to these minimum settings, the <connection> element takes optional attributes

that let you configure the use of physical connections to the database server. This is especially

important for production servers and if more than one WFS service connects to the same

database server (in this case, you should also carefully configure the database itself). The

attributes together with their meaning are described in the following table.

Attribute Description

initialSize
(int) the initial number of physical connections that are created
when the database connection is established (default: 10).

maxActive

(int) The maximum number of active connections to the
database that can be allocated at the same time (default: 100).
NOTE – make sure your database is configured to handle this
number of parallel active connections.

maxIdle

(int) The maximum number of connections that should be kept
active at all times (default: 50). Idle connections are checked
periodically (if enabled) and connections that have been idle
for longer than minEvictableIdleTimeMillis will be

released. (also see testWhileIdle)

minIdle

(int) The minimum number of established connections that
should be kept active at all times (default: 0). The connection
pool can shrink below this number if validation queries fail.
(also see testWhileIdle)

maxWait
(int) The maximum number of milliseconds that the service will
wait (when there are no available connections) for a
connection before throwing an exception (default: 30000, i.e.

276 3D Geodatabase for CityGML 2019

30 seconds).

testOnBorrow

(boolean) The indication of whether connections will be
validated before being used by the service. If the connections
fails to validate, it will be dropped, and the service will attempt
to borrow another (default: false). NOTE - for a true value to
have any effect, the validationQuery parameter must be set

to a non-null string. In order to have a more efficient
validation, see validationInterval.

testOnReturn

(boolean) The indication of whether connections will be
validated before being returned to the internal connection pool
(default: false). NOTE - for a true value to have any effect, the
validationQuery parameter must be set to a non-null string.

testWhileIdle

(boolean) The indication of whether connections will be
validated by the idle connections evictor (if any). If a
connections fails to validate, it will be dropped (default: false).
NOTE - for a true value to have any effect, the
validationQuery parameter must be set to a non-null string.

validationQuery

(String) The SQL query that will be used to validate
connections. If specified, this query does not have to return
any data (default: null). Example values are “select 1 from
dual” (Oracle) or “select 1” (PostgreSQL).

validationClassName

(String) The name of a class which implements the
org.apache.tomcat.jdbc.pool.Validator interface and

provides a no-arg constructor (may be implicit). If specified,
the class will be used to instead of any validation query to
validate connections (default: null). NOTE – for a non-null
value to have any effect, the class has to be implemented by
you as part of the source code of the WFS service. Use with
care.

timeBetweenEvictionRunsMillis

(int) The number of milliseconds to sleep between runs of the
idle connection validation/cleaner. This value should not be
set under 1 second. It dictates how often we check for idle,
abandoned connections, and how often we validate idle
connections (default: 30000, i.e. 30 seconds).

minEvictableIdleTimeMillis
(int) The minimum amount of time a connection may be idle
before it is eligible for eviction (default: 60000, i.e. 60
seconds).

removeAbandoned

(boolean) Flag to remove abandoned connections if they
exceed the removeAbandonedTimout. If set to true a

connection is considered abandoned and eligible for removal
if it has been in use longer than the
removeAbandonedTimeout See also logAbandoned (default:

false).

removeAbandonedTimeout
(int) Timeout in seconds before an abandoned (in use)
connection can be removed (default: 60, i.e. 60 seconds). The
value should be set to the longest running query.

logAbandoned
(boolean) Flag to log stack traces for application code which
abandoned a connection. NOTE - this adds overhead for
every connection borrow (default: false).

connectionProperties

(String) The connection properties that will be sent to the
JDBC driver when establishing new connections. Format of
the string must be [propertyName=property;]* NOTE - The

"user" and "password" properties will be passed explicitly, so
they do not need to be included here (default: null).

initSQL
(String) A custom query to be run when a connection is first
created (default: null).

validationInterval
(long) To avoid excess validation, only run validation at most
at this frequency - time in milliseconds. If a connection is due
for validation, but has been validated previously within this

3D Geodatabase for CityGML 2019 277

interval, it will not be validated again (default: 30000, i.e. 30
seconds).

jmxEnabled
(boolean) Register the internal connection pool with JMX or
not (default: true).

fairQueue
(boolean) Set to true if connection requests should be treated
fairly in a true FIFO fashion (default: true)

abandonWhenPercentageFull

(int) Connections that have been abandoned (timed out) will
not get closed and reported up unless the number of
connections in use are above the percentage defined by
abandonWhenPercentageFull. The value should be between

0-100 (default: 0, which implies that connections are eligible
for closure as soon as removeAbandonedTimeout has been

reached).

maxAge

(long) Time in milliseconds to keep connections alive. When a
connection is returned to the internal pool, it will be checked
whether now - time-when-connected > maxAge has been

reached, and if so, the connection is closed (default: 0, which
implies that connections will be left open and no age check
will be done).

suspectTimeout (int) Timeout value in seconds (default: 0).

Table 39: Optional database connection settings.

 Capabilities settings
The capabilities settings define the contents of the capabilities document that is returned by

the WFS service upon a GetCapabilities request. The capabilities document is

generated dynamically from the contents of the config.xml file at request time.

Only optional service metadata must be explicitly specified in the config.xml file using

the <owsMetadata> child element of <capabilities> (see the example listing below).

All other sections of the capabilities document are populated automatically from the

config.xml file. For example, the set of feature types advertised in the

<wfs:FeatureTypeList> section is derived from the content of the

<featureTypes> element (cf. chapter 7.3.3).

Note that the metadata is copied to the capabilities document “as is”. Thus, the WFS

implementation neither performs a consistency check nor validates the provided metadata.

 <capabilities>
 <owsMetadata>
 <ows:ServiceIdentification>
 <ows:Title>3D City Database Web Feature Service</ows:Title>
 <ows:ServiceType>WFS</ows:ServiceType>
 <ows:ServiceTypeVersion>2.0.0</ows:ServiceTypeVersion>
 </ows:ServiceIdentification>
 <ows:ServiceProvider>
 <ows:ProviderName/>
 <ows:ServiceContact/>
 </ows:ServiceProvider>
 </owsMetadata>
 </capabilities>

Listing 2: Service metadata settings in the WFS config.xml file.

278 3D Geodatabase for CityGML 2019

Service metadata comprises, for example, information about the service itself that might be

useful in machine-to-machine communication or for display to a human. Such information is

announced through the <ows:ServiceIdentifikation> child element. In contrast, the

child element <ows:ServiceProvider> contains information about the service provider

such as contact information. Please refer to the OGC Web Services Common Specification

(OGC 06-121r3:2009) to get an overview of the supported metadata fields that may be

included in the capabilities document and therefore can be specified in <owsMetadata>.

Note: Service metadata is optional and therefore does not have to be included in the

config.xml file. Simply provide no content for the <capabilities> element

or omit it completely. In both cases, the capabilities document will nevertheless be

generated dynamically.

Note: The 3DCityDB WFS implementation supports both versions 2.0.0 and 2.0.2 of the

WFS specification. A list of <ows:ServiceTypeVersion> elements is used to

denote which versions are offered to clients. The default config.xml only uses

version 2.0.0 because many WFS clients still have issues with correctly handling

version 2.0.2.

 Feature type settings
With the feature type settings, you can control which feature types can be queried from the 3D

City Database and are served through the WFS interface. Every feature type that shall be

advertised to a client must be explicitly listed in the config.xml file.

An example of the corresponding <featureTypes> XML element is shown below. In this

example, CityGML Building and Road objects are available from the WFS service. In

addition, a third feature type IndustrialBuilding coming from a CityGML ADE is advertised.

 <featureTypes>
 <featureType>
 <name>Building</name>
 <ows:WGS84BoundingBox>
 <ows:LowerCorner>-180 -90</ows:LowerCorner>
 <ows:UpperCorner>180 90</ows:UpperCorner>
 </ows:WGS84BoundingBox>
 </featureType>
 <featureType>
 <name>Road</name>
 <ows:WGS84BoundingBox>
 <ows:LowerCorner>-180 -90</ows:LowerCorner>
 <ows:UpperCorner>180 90</ows:UpperCorner>
 </ows:WGS84BoundingBox>
 </featureType>
 <adeFeatureType>
 <name namespaceURI="http://www.citygml.org/ade/TestADE/1.0">IndustrialBuilding</name>
 <ows:WGS84BoundingBox>
 <ows:LowerCorner>-180 -90</ows:LowerCorner>
 <ows:UpperCorner>180 90</ows:UpperCorner>
 </ows:WGS84BoundingBox>

3D Geodatabase for CityGML 2019 279

 </adeFeatureType>
 <version isDefault="true">2.0</version>
 <version>1.0</version>
 </featureTypes>

Listing 3: Advertised feature types in the WFS config.xml file.

The <featureTypes> element contains one <featureType> node per feature type to

be advertised. The feature type is specified through the mandatory name property, which can

only take values from a fixed list that enumerates the names of the CityGML top-level

features (cf. config.xsd schema file). In addition, the geographic region covered by all

instances of this feature type in the 3D City Database can optionally be announced as

bounding box (lower left and upper right corner). The coordinate values must be given in

WGS 84.

Note: The bounding box is not automatically checked against or computed from the

database, but rather copied to the WFS capabilities document “as is”.

Feature types coming from a CityGML ADE are advertised using the <adeFeatureType>

element. In contrast to CityGML feature types, the name property must additionally contain

the globally unique XML namespace URI of the CityGML ADE, and the type name is not

restricted to a fixed enumeration. Note that a corresponding ADE extension must be installed

for the WFS service, and that the ADE extension must add support for the advertised ADE

feature type. Otherwise, the ADE feature type is ignored. If you do not have ADE extensions,

then simply skip the <adeFeatureType> element.

Besides the list of advertised feature types, also the CityGML version to be used for encoding

features in a response to a client’s request has to be specified. Use the <version> element

for this purpose, which takes either 2.0 (for CityGML 2.0) or 1.0 (for CityGML 1.0) as

value. If both versions shall be supported, simply use two <version> elements. However,

in this case, you should define the default version to be used by the WFS by setting the

isDefault attribute to true on one of the elements (otherwise, CityGML 2.0 will be the

default).

 Operations settings
The operations settings are used to define the operation-specific behavior of the WFS.

 <operations>
 <requestEncoding>
 <method>KVP+XML</method>
 <useXMLValidation>true</useXMLValidation>
 </requestEncoding>
 <exportCityDBMetadata>false</exportCityDBMetadata>
 <GetFeature>
 <outputFormats>
 <outputFormat name="application/gml+xml; version=3.1"/>
 <outputFormat name="application/json"/>
 </outputFormats>

280 3D Geodatabase for CityGML 2019

 </GetFeature>
 </operations>

Listing 4: Operations settings in the WFS config.xml file.

The <requestEncoding> element determines whether the WFS shall support XML-

encoded and/or KVP-encoded requests. The desired method is chosen using the <method>

child element that accepts the values “KVP”, “XML” and “KVP+XML” (default: KVP+XML).

When setting the <useXMLValidation> child element to true, all XML encoded

operation requests sent to the WFS are first validated against the WFS and CityGML XML

schemas. Requests that violate the schemas are not processed but instead a corresponding

error message is sent back to the client. Although XML validation might take some

milliseconds, it is highly recommended to always set this option to true to avoid unexpected

failures due to XML issues.

With this version of the WFS interface, the only operation that can be further configured is the

<GetFeature> operation. You can choose the available output formats that can be used in

encoding the response to the client. The value “application/gml+xml; version=3.1” is the

default and basically means that the response to a GetFeature operation will be purely XML-

encoded (using CityGML as encoding format with the version specified in the feature type

settings, cf. chapter 7.3.3). In addition, the WFS can advertise the output format

“application/json”. In this case, the response is delivered in CityJSON format.9 CityJSON is a

JSON-based encoding of a subset of the CityGML data model. The 3DCityDB WFS supports

version 0.6 of CityJSON. Note that the format is still under development.

Note: The WFS can only advertise the different output formats in the capabilities

document. It is up to the client though to choose one of these output formats when

requesting feature data from the WFS.

 Postprocessing settings
The postprocessing settings allow for specifying XSLT transformations that are applied on

the CityGML data of a WFS response before sending the response to the client.

 <postProcessing>
 <xslTransformation isEnabled="true">
 <stylesheet>AdV-coordinates-formatter.xsl</stylesheet>
 </xslTransformation>
 </postProcessing>

Listing 5: Postprocessing settings in the WFS config.xml file.

To enable transformations, set the isEnabled attribute on the <xslTransformation>

child element to true. In addition, provide one or more <stylesheet> elements

enumerating the XSLT stylesheets that shall be applied in the transformation. The stylesheets

are supposed to be stored in the xslt-stylesheets subfolder of the WEB-INF folder of

your WFS application. Thus, any relative path provided as <stylesheet> will be resolved

9 http://www.cityjson.org

3D Geodatabase for CityGML 2019 281

against WEB-INF/xslt-stylesheets/. You may alternatively provide an absolute path

pointing to another location in your local file system. However, note that the WFS web

application must have appropriate access rights to this location.

If you provide more than one XSLT stylesheet, then the stylesheets are executed in the given

sequence of the <stylesheet> elements, with the output of a stylesheet being the input for

its direct successor.

Note: To be able to handle arbitrarily large exports, the WFS process reads single top-level

features from the database, which are then written to the response stream. Each

XSLT stylesheet will hence just work on individual top-level features but not on the

entire response.

Note: The output of each XSLT stylesheet must again be a valid CityGML structure.

Note: Only stylesheets written in the XSLT language version 1.0 are supported.

 Server settings

Server-specific settings are available through the <server> element in the config.xml

file.

 <server>
 <externalServiceURL>http://yourserver.org/citydb-wfs</externalServiceURL>
 <maxParallelRequests>30</maxParallelRequests>
 <waitTimeout>60</waitTimeout>
 <enableCORS>true</enableCORS>
 </server>

Listing 6: Server settings in the WFS config.xml file.

The external service URL of the WFS can be denoted using the <externalServiceURL>

element. The URL should include the protocol (typically http or https), the server name and

the full context path where the service is available for clients. Also announce the port on

which the service listens if it is not equal to the default port associated with the given

protocol.

Note: The service URL is not configured through <externalServiceURL>. It rather

follows from your servlet container settings and network access settings (e.g., if your

servlet container is behind a reverse proxy). The <externalServiceURL> value

is only used in the capabilities document and thus announced to a client. Most clients

rely on the service URL in the capabilities document and will send requests to this

URL. So, make sure that the WFS is available at the <externalServiceURL>

provided in the config.xml.

The <maxParallelRequests> value defines how many requests will be handled by the

WFS service at the same time (default: 30). If the number of parallel requests exceeds the

given limit, then new requests are blocked until active requests have been fully processed and

the total number of active requests has fallen below the limit.

282 3D Geodatabase for CityGML 2019

Note: Every WFS can only open a maximum number of physical connections to the

database system running the 3D City Database instance. This upper limit is set

through the maxActive attribute on the <connection> element (cf. chapter

7.3.1). Since every request may use more than one connection, make sure that the

total number of parallel requests is below the maximum number of physical

connections.

In case an incoming request is blocked because the maximum number of parallel requests has

been reached, the <waitTimeout> option lets you specify the maximum time in seconds

the WFS service waits for a free request slot before sending an error message to the client

(default: 60 seconds).

The flag <enableCORS> (default: true) allows for enabling Cross-Origin Resource Sharing

(CORS). Usually, the Same-Origin-Policy (SOP) forbids a client to send Cross-Origin

requests. If CORS is enabled, the WFS server sends the HTTP header Access-Control-

Allow-Origin with the value * in the response.

 Cache settings
When exporting data, the WFS must keep track of various temporary information. For

instance, when resolving XLinks, the gml:id values as well as additional information about

the related features and geometries must be available. This information is kept in main

memory for performance. However, when memory limits are reached, the cache is written to

temporary tables in the database.

Per default, temporary tables are created in the 3D City Database instance itself. The tables

are populated during the export operation and are automatically dropped after the operation

has finished. Alternatively, the cache settings available through the <uidCache> element let

a user choose to store the temporary information in the local file system instead.

 <uidCache>
 <mode>local</mode>
 </uidCache>

Listing 7: Cache settings in the WFS config.xml file.

The <mode> property allows for switching between database cache (default) and local

cache. Some reasons for using a local, file-based storage are:

 The 3D City Database instance is kept clean from any additional (temporary) table.

 If the Importer/Exporter runs on a different machine than the 3D City Database

instance, sending temporary information over the network might be slow. In such

cases, using a local storage might help to increase performance.

 Constraints settings

The <constraints> element of the config.xml allows for defining constraints on

dedicated WFS operations.

3D Geodatabase for CityGML 2019 283

 <constraints>
 <countDefault>10</countDefault>
 <stripGeometry>false</stripGeometry>
 <lodFilter mode="and" searchMode="depth" searchDepth="2">
 <lod>2</lod>
 <lod>3</lod>
 </lodFilter>
 </constraints>

Listing 8: Security settings in the WFS config.xml file.

The <countDefault> constraint restricts the number of city objects to be returned by the

WFS to the user-defined value, even if the request is satisfied by more city objects in the 3D

City Database. The default behavior is to return all city objects matching a request. If a

maximum count limit is defined, then this limit is automatically advertised in the server’s

capabilities document using the CountDefault constraint.

When setting <stripGeometry> to true (default: false), the WFS will remove all spatial

properties from a city object before returning the city object to the client. Thus, the client will

not receive any geometry values.

The <lodFilter> constraint defines a server-side filter on the LoD representations of the

city objects. When using this constraint, city objects in a response document will only contain

those LoD levels that are enumerated using one or more <lod> child elements of

<lodFilter>. Further LoD representations of a city object, if any, are automatically

removed. If a city object satisfies a query but does not have a geometry representation in at

least one of the specified LoD levels, it will be skipped from the response document and thus

not returned to the client.

The default behavior of the LoD filter can be adapted using attributes on the <lodFilter>

element. The mode attribute defines whether a city object must have a spatial representation in

all (“and”) or just one (“or”) of the provided LoD levels. If setting searchMode to “depth”,

then you can use the additional searchDepth attribute to specify how many levels of nested

city objects shall be considered when searching for matching LoD representations. If

searchMode is set to “all”, then all nested city objects will be considered.

Note: The constraint settings in config.xml do not replace a real security layer on user,

database or network level. So, it is your responsibility to take any reasonable

physical, technical and administrative measures to secure the WFS service and the

access to the 3D City Database.

 Logging settings
The WFS service logs messages and errors that occur during operations to a dedicated log

file. Entries in the log file are associated with a timestamp, the severity of the event and the IP

address of the client (if available). Per default, the log is stored in the file WEB-

INF/wfs.log within the application folder of the WFS web application.

284 3D Geodatabase for CityGML 2019

The <logging> element in the config.xml file is used to adapt these default settings.

The attribute logLevel on the <file> child element lets you change the severity level for log

messages to debug, info, warn, or error (default: info). Additionally, you can provide an

alternative absolute path and filename where to store the log messages.

Note: A web application typically has limited access to the file system for security reasons.

Thus, make sure that the log file is accessible for the WFS web application. Check

the documentation of your servlet container for details.

If you want log messages to be additionally printed to the console, then simply include the

<console> child element as well. The <console> element also provides a logLevel

attribute to define the severity level.

 <logging>
 <console logLevel="info"/>
 <file logLevel="info">
 <fileName>path/to/your/wfs.log</fileName>
 </file>
 </logging>

Listing 9: Logging settings in the WFS config.xml file.

Note: Log messages are continuously written to the same log file. The WFS application

does not include any mechanism to truncate or rotate the log file in case the file size

grows over a certain limit. So make sure you configure log rotation on your server.

7.4 Using the Web Feature Service

The Web Feature Service is implemented against version 2.0 of the OGC Web Feature

Service Interface Standard. Previous versions are not supported any more, and clients must

make sure to use this version of the interface when sending requests to the WFS service.

The following chapters provide a documentation of the functionality offered by the 3D City

Database Web Feature Service. They do not provide a general overview or description of the

OGC Web Feature Service Interface Standard itself. If you need more general information

about WFS, please refer to the WFS specification document instead (OGC Doc. No. 09-

025r2).

 Basic functionality

7.4.1.1 WFS operations

The OGC WFS 2.0 interface defines eleven operations that can be invoked by a client. A

WFS server is not required to offer all operations to conform to the standard but may support

a subset only. For this purpose, the WFS standard defines conformance classes named Simple

WFS, Basic WFS, Transactional WFS and Locking WFS that grow in the number of

mandatory operations. The current version of the 3D City Database Web Feature Service

implements the Simple WFS conformance class. Thus, it is fully OGC conformant but lacks

operations from other conformance classes. It is planned to incrementally increase the

functionality of the WFS in future releases.

3D Geodatabase for CityGML 2019 285

The following table lists all WFS 2.0 operations and marks those supported by the 3D City

Database WFS.

Operation Description Supported

GetCapabilities
The GetCapabilities operation generates a service

metadata document describing the WFS service
provided by a server.

X

DescribeFeatureType
The DescribeFeatureType operation returns a

schema description of the CityGML feature types
offered by the WFS instance.

X

ListStoredQueries
The ListStoredQueries operation lists the stored

queries available at the server.
X

DescribeStoredQuery
The DescribeStoredQueries operation provides

detailed metadata about each stored query expression
that the server offers.

X

GetFeature
The GetFeature operation returns a selection of

CityGML features from the 3D City Database using a
query expression.

X

GetPropertyValue

The GetPropertyValue operation allows the value of a

feature property or part of the value of a complex
feature property to be retrieved from the 3D City
Database for a set of features identified using a query
expression.

-

LockFeature
The LockFeature operation is used to expose a long-

term feature locking mechanism to ensure consistency
in data manipulation operations (e.g., update or delete).

-

GetFeatureWithLock

The GetFeatureWithLock operation is functionally

similar to the GetFeature operation except that in

response to a GetFeatureWithLock operation, the

WFS shall also lock the features in the result set.

-

CreateStoredQuery
A stored query may be created using the
CreateStoredQuery operation.

-

DropStoredQuery
The DropStoredQuery operation allows previously

created stored queries to be dropped from the system.
-

Transaction

The Transaction operation is used to describe data

transformation operations (i.e., insert, update, replace,
delete) to be applied to CityGML feature instances
under the control of the web feature service.

-

Table 40: Overview of supported WFS 2.0 operations.

7.4.1.2 Service URL

The service URL or service endpoint is the location where the 3D City Database WFS can be

accessed by a client application over a local network or the internet. This URL is typically

composed as follows:

http[s]://[host][:port]/[context_path]/wfs

The actual URL depends on the servlet container and your network configuration. Please ask

your network administrator for the protocol (typically http or https), the host name and

the port of the server. The context path is typically added to the URL by the servlet container.

Please refer to the documentation of your servlet container for more information. The last

component wfs of the URL identifies the service and makes sure that requests are routed to

the WFS service implementation.

286 3D Geodatabase for CityGML 2019

Note: For Apache Tomcat, the name of the WFS WAR file will be used as context path in

the service URL. For example, if the WAR file is named citydb-wfs.war, then

the service URL will be http[s]://[host][:port]/citydb-wfs/wfs. To

pick a different context path, simply rename the WAR file or change Tomcat’s

default behavior.

7.4.1.3 Service bindings

A service binding refers to the communication protocol that shall be used for exchanging

request and response messages between a WFS server and a client. The WFS 2.0 interface

standard defines HTTP GET, HTTP POST and SOAP over HTTP POST as possible service

bindings for WFS 2.0 implementations.

The 3D City Database WFS implements both the HTTP POST and the HTTP GET

conformance class. Therefore, a client can choose to send a request either XML-encoded

using the HTTP method POST (using text/xml as content type) or KVP-encoded (key-

value-pair) using the HTTP method GET. Note that the XML content of POST messages sent

to the server must be well-formed and valid with respect to the WFS 2.0 XML Schema.10

The following table summarizes the operations and the supported service binding as offered

by the 3D City Database WFS.

Operation Service Binding

GetCapabilities XML over HTTP POST and KVP over HTTP GET

DescribeFeatureType XML over HTTP POST and KVP over HTTP GET

ListStoredQueries XML over HTTP POST and KVP over HTTP GET

DescribeStoredQuery XML over HTTP POST and KVP over HTTP GET

Table 41: Service bindings for the supported WFS 2.0 operations.

7.4.1.4 CityGML feature types

The 3D City Database WFS supports all CityGML top-level feature types, and corresponding

feature instances will be sent to the client upon request. If you just want to advertise a subset

of the CityGML feature types, you can restrict the feature types in the config.xml settings

(cf. chapter 7.3.3). In addition to the predefined CityGML feature types, the WFS can also

support feature types defined in a CityGML ADE. This requires a corresponding ADE

extension to be installed for the WFS and to be registered with the 3DCityDB instance.

Note: Appearance properties of CityGML features such as textures or color information are

currently not supported by the WFS implementation and thus will not be included in

a response document.

The supported CityGML feature types together with their official XML namespaces

(CityGML version 2.0 and 1.0) are listed in the table below.

Feature type XML namespace

Building
http://www.opengis.net/citygml/building/2.0
http://www.opengis.net/citygml/building/1.0

10 http://schemas.opengis.net/wfs/2.0/wfs.xsd

3D Geodatabase for CityGML 2019 287

Bridge http://www.opengis.net/citygml/bridge/2.0

Tunnel http://www.opengis.net/citygml/tunnel/2.0

TransportationComplex
http://www.opengis.net/citygml/transportation/2.0
http://www.opengis.net/citygml/transportation/1.0

Road
http://www.opengis.net/citygml/transportation/2.0
http://www.opengis.net/citygml/transportation/1.0

Track
http://www.opengis.net/citygml/transportation/2.0
http://www.opengis.net/citygml/transportation/1.0

Square
http://www.opengis.net/citygml/transportation/2.0
http://www.opengis.net/citygml/transportation/1.0

Railway
http://www.opengis.net/citygml/transportation/2.0
http://www.opengis.net/citygml/transportation/1.0

CityFurniture
http://www.opengis.net/citygml/cityfurniture/2.0
http://www.opengis.net/citygml/cityfurniture/1.0

LandUse
http://www.opengis.net/citygml/landuse/2.0
http://www.opengis.net/citygml/landuse/1.0

WaterBody
http://www.opengis.net/citygml/waterbody/2.0
http://www.opengis.net/citygml/waterbody/1.0

PlantCover
http://www.opengis.net/citygml/vegetation/2.0
http://www.opengis.net/citygml/vegetation/1.0

SolitaryVegetationObject
http://www.opengis.net/citygml/vegetation/2.0
http://www.opengis.net/citygml/vegetation/1.0

ReliefFeature
http://www.opengis.net/citygml/relief/2.0
http://www.opengis.net/citygml/relief/1.0

GenericCityObject
http://www.opengis.net/citygml/generics/2.0
http://www.opengis.net/citygml/generics/1.0

CityObjectGroup
http://www.opengis.net/citygml/cityobjectgroup/2.0
http://www.opengis.net/citygml/cityobjectgroup/1.0

Table 42: Supported CityGML top-level feature types together with their XML namespace.

7.4.1.5 Exception reports

If the WFS encounters an error while parsing or processing a request, an XML document

indicating that error is generated and sent to the client as exception response. Please refer to

the WFS 2.0 specification for the structure and syntax of the exception response.

 GetCapabilities operation

The GetCapabilities operation generates an XML-encoded service metadata document

describing the WFS service provided by a server. The capabilities document contains relevant

technical and non-technical information about the service and its provider. Its content mainly

depends on the configuration of the WFS in the config.xml settings file (if created

dynamically).

The following XML snippet shows an XML encoding of a GetCapabilities operation.

<?xml version="1.0" encoding="UTF-8"?>
<wfs:GetCapabilities service="WFS" xmlns:wfs="http://www.opengis.net/wfs/2.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.opengis.net/wfs/2.0
http://schemas.opengis.net/wfs/2.0/wfs.xsd"/>

Listing 10: Example GetCapabilities operation.

288 3D Geodatabase for CityGML 2019

The declaration of the WFS XML namespace http://www.opengis.net/wfs/2.0 is

mandatory to be able to validate the request against the official WFS XML Schema definition.

The reference to the schema location using the xsi:schemaLocation attribute is

however optional. It is recommended though if the XML encoding of the request is created

manually by the user (and not automatically by a client software) to ensure schema validity.

Per default, the WFS service will reject invalid requests (see chapter 7.3.4).

The following table shows the XML attributes that can be used in the GetCapabilities

request and are supported by the WFS implementation.

XML attribute O / Ma Default value Description

service M WFS (fixed)
The service attribute indicates the
service type. The value “WFS” is fixed.

aO = optional, M = mandatory

Listing 11: Supported XML attributes of a GetCapabilities operation.

As alternative to XML encoding, the GetCapabilities operation may also be invoked

through a KVP-encoded HTTP GET request.

http[s]://[host][:port]/[context_path]/wfs?

SERVICE=WFS&

REQUEST=GetCapabilities&

ACCEPTVERSIONS=2.0.0,2.0.2

The SERVICE parameter is also mandatory for the KVP-encoded request. In addition, the

ACCEPTVERSIONS parameter can be used for version number negotiation with the WFS

server (cf. OGC Document No. 06-121r3:2009, chapter 7.3.2).

 DescribeFeatureType operation

The DescribeFeatureType operation returns an XML Schema description of the

CityGML feature types advertised by the 3D City Database WFS instance. Which feature

types are offered by the WFS is controlled through the config.xml settings file (cf. chapter

7.4.1.4). The XML Schema defines the structure and content of the features (thematic and

spatial attributes, nested features, etc.) as well as the way how features are encoded in

responses to GetFeature requests.

The following example shows a valid DescribeFeatureType operation requesting the

XML Schema definition of the CityGML 1.0 Building feature type.

<?xml version="1.0" encoding="UTF-8"?>
<wfs:DescribeFeatureType service="WFS" version="2.0.0"
 xmlns:wfs="http://www.opengis.net/wfs/2.0"
 xmlns:bldg="http://www.opengis.net/citygml/building/1.0">
 <wfs:TypeName>bldg:Building</wfs:TypeName>
</wfs:DescribeFeatureType>

Listing 12: Example DescribeFeatureType operation.

3D Geodatabase for CityGML 2019 289

The DescribeFeatureType operations takes the following XML attributes.

XML attribute O / Ma Default value Description

service M WFS (fixed)
The service attribute indicates the
service type. The value “WFS” is fixed.

version M 2.0.x
The version of the WFS Interface
Standard to be used in the
communication.

outputFormat O
application/gml+xml;

version=3.1

Controls the format of the schema
description. Currently, the default value
is the only option and results in a
CityGML / GML 3.1.1 application
schema.

handle O

The handle parameter allows a client to
associate a mnemonic name with the
request that will be used in exception
reports.

aO = optional, M = mandatory

Listing 13: Supported XML attributes of a DescribeFeatureType operation.

The <wfs:TypeName> child element of the DescribeFeatureType operation

identifies the feature type for which the XML Schema description is requested. Be careful to

use the correct spelling of the feature type name (as specified by the CityGML standard) and

to associate the name with the correct CityGML XML namespace. The <wfs:TypeName>

element may occur multiple times to request schema definitions of several feature types in a

single DescribeFeatureType operation. If the <wfs:TypeName> element is omitted,

then the CityGML base schema is returned by the WFS.

The DescribeFeatureType operation can alternatively be invoked through HTTP GET

with key-value pairs.

http[s]://[host][:port]/[context_path]/wfs?

SERVICE=WFS&

VERSION=2.0.2&

REQUEST=DescribeFeatureType&

TYPENAME=tran:Road

The following KVP parameters are supported.

KVP parameter O / Ma Default value Description

SERVICE M WFS (fixed) see above

VERSION M 2.0.x see above

NAMESPACES O
Used to specify namespaces and their
prefixes. The format shall be
xmlns(prefix,escaped_url).

TYPENAME M
A comma-separated list of feature types
to describe.

OUTPUTFORMAT O
application/gml+xml;

version=3.1
see above

aO = optional, M = mandatory

Listing 14: Supported KVP parameters of a DescribeFeatureType operation.

290 3D Geodatabase for CityGML 2019

The TYPENAME attribute lists the feature types to describe. Like an XML-encoded request,

both the feature type names and the XML namespaces must be correct. XML namespaces and

their prefixes can be specified using the NAMESPACES attribute. However, the 3DCityDB

WFS can correctly deal with the default CityGML prefixes. An additional definition via the

NAMESPACES attribute is therefore obsolet when using the default prefixes (see example

above).

 ListStoredQueries operation

Since version 2.0 of the WFS standard, a WFS server is supposed to manage predefined and

parameterized feature query expressions (so called stored queries) that are stored by the

server and that can be repeatedly invoked by the client using different parameter values.

Stored queries hide the complexity of the underlying query expression from the client since

all the client needs to know is the unique identifier of the stored query as well as the names

and types of the parameters in order to invoke the operation.

The ListStoredQuery operation is meant to provide the list of stored queries that is

offered by the WFS server. The response document contains the unique identifier for each

stored query which can then be used in a subsequent DescribeStoredQuery operation to

receive the details of a specific stored query form the WFS server. The following listing

presents an example ListStoredQuery operation.

<?xml version="1.0" encoding="UTF-8"?>
<wfs:ListStoredQueries service="WFS" version="2.0.0"
 xmlns:wfs="http://www.opengis.net/wfs/2.0"/>

Listing 15: Example ListStoredQuery operation.

The ListStoredQuery operation may take the following XML attributes as parameters.

XML attribute O / Ma Default value Description

service M WFS (fixed)
The service attribute indicates the
service type. The value “WFS” is fixed.

version M 2.0.x
The version of the WFS Interface
Standard to be used in the
communication.

handle O

The handle parameter allows a client to
associate a mnemonic name with the
request that will be used in exception
reports.

aO = optional, M = mandatory

Listing 16: Supported XML attributes of a ListStoredQuery operation.

The corresponding KVP-encoded request is shown below.

http[s]://[host][:port]/[context_path]/wfs?

SERVICE=WFS&

VERSION=2.0.0&

REQUEST=ListStoredQueries

3D Geodatabase for CityGML 2019 291

The following KVP parameters can be used when invoking the ListStoredQueries

operation.

KVP parameter O / Ma Default value Description

SERVICE M WFS (fixed) see above

VERSION M 2.0.x see above

aO = optional, M = mandatory

Listing 17: Supported KVP parameters of a ListStoredQuery operation.

 DescribeStoredQuery operation

The DescribeStoredQuery operation is used to provide the details of one or more stored

queries offered by the server. The following listing exemplifies a DescribeStoredQuery

request.

<?xml version="1.0" encoding="UTF-8"?>
<wfs:DescribeStoredQueries service="WFS" version="2.0.0"
 xmlns:wfs="http://www.opengis.net/wfs/2.0">
 <wfs:StoredQueryId>http://www.opengis.net/def/query/OGC-
WFS/0/GetFeatureById</wfs:StoredQueryId>
</wfs:DescribeStoredQueries>

Listing 18: Example DescribeStoredQuery operation.

The <wfs:StoredQueryId> child element provides the unique identifier of the stored

query (see ListStoredQuery operation, chapter 7.4.4). By providing more than on unique

identifier through multiple <wfs:StoredQueryId> elements, the descriptions of separate

stored queries can be requested in a single DescribeStoredQuery operation. If the

<wfs:StoredQueryId> element is omitted, a description of all stored queries available at

the WFS server is returned to the client. The above request will produce a response similar to

the following listing.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<wfs:DescribeStoredQueriesResponse xmlns:fes="http://www.opengis.net/fes/2.0"
xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:wfs="http://www.opengis.net/wfs/2.0">
 <wfs:StoredQueryDescription id="http://www.opengis.net/def/query/OGC-
WFS/0/GetFeatureById">
 <wfs:Title xml:lang="en">Get feature by identifier</wfs:Title>
 <wfs:Abstract xml:lang="en">Retrieves a feature by its gml:id.</wfs:Abstract>
 <wfs:Parameter name="id" type="xs:string">
 <wfs:Title xml:lang="en">Identifier</wfs:Title>
 <wfs:Abstract xml:lang="en">The gml:id of the feature to be retrieved.</wfs:Abstract>
 </wfs:Parameter>
 <wfs:QueryExpressionText returnFeatureTypes="" language="urn:ogc:def:queryLanguage:OGC-
WFS::WFS_QueryExpression" isPrivate="false">
 <wfs:Query typeNames="schema-element(core:_CityObject)">
 <fes:Filter>
 <fes:ResourceId rid="${id}"/>
 </fes:Filter>
 </wfs:Query>
 </wfs:QueryExpressionText>

292 3D Geodatabase for CityGML 2019

 </wfs:StoredQueryDescription>
</wfs:DescribeStoredQueriesResponse>

Listing 19: Example response to a DescribeStoredQuery request.

Every WFS implementation must at minimum offer the GetFeatureById stored query

having the unique identifier http://www.opengis.net/def/query/OGC-WFS/0/GetFeatureById

as shown above. This stored query takes a single parameter id of type xs:string and

returns zero or exactly one feature whose resource identifier matches the id value. For the 3D

City Database WFS, the id value is evaluated against the gml:id of each feature in the

database to find a match.

The returnFeatureTypes attribute lists the feature types that may be returned by a

stored query. Note that this string is empty for the the GetFeatureById query.

Consequently, the query will return a feature instance of all advertised feature types if its

gml:id matches. The set of advertised feature types can be influenced in the config.xml

settings file. The DescribeStoredQuery operation allows the following XML attributes.

XML attribute O / Ma Default value Description

service M WFS (fixed)
The service attribute indicates the
service type. The value “WFS” is fixed.

version M 2.0.x
The version of the WFS Interface
Standard to be used in the
communication.

handle O

The handle parameter allows a client to
associate a mnemonic name with the
request that will be used in exception
reports.

aO = optional, M = mandatory

Listing 20: Supported XML attributes of a DescribeStoredQuery operation.

A KVP-encoded DescribeStoredQueries request is shown below.

http[s]://[host][:port]/[context_path]/wfs?

SERVICE=WFS&

VERSION=2.0.2&

REQUEST=DescribeStoredQueries&

STOREDQUERY_ID=http%3A%2F%2Fwww.opengis.net%2Fdef%2Fquery%2FOGC

-WFS%2F0%2FGetFeatureById

The supported KVP parameters are listed in the following table.

KVP parameters O / Ma Default value Description

SERVICE M WFS (fixed) see above

VERSION M 2.0.x see above

STOREDQUERY_ID O
A comma-separated list of stored query
identifiers to describe.

aO = optional, M = mandatory

Listing 21: Supported KVP parameters of a DescribeStoredQuery operation.

3D Geodatabase for CityGML 2019 293

 GetFeature operation

The GetFeature operation lets a client query CityGML features from the 3D City

Database. The Simple WFS conformance class only mandates WFS server implementations to

support GetFeature queries that use the predefined stored query GetFeatureById as

query expression and filter criteria. For this reason, the current version of the 3D City

Database WFS handles GetFeatureById queries but no ad-hoc queries. The

GetFeature support will be extended in future releases.

A valid GetFeature operation is shown below. The gml:id of the city object that shall be

returned by the WFS is passed as parameter to the GetFeatureById stored query.

<?xml version="1.0" encoding="UTF-8"?>
<wfs:GetFeature service="WFS" version="2.0.0" xmlns:wfs="http://www.opengis.net/wfs/2.0">
 <wfs:StoredQuery id="http://www.opengis.net/def/query/OGC-WFS/0/GetFeatureById">
 <wfs:Parameter name="id">ID_0815</wfs:Parameter>
 </wfs:StoredQuery>
</wfs:GetFeature>

Listing 22: Example GetFeature operation.

The WFS will answer the above request with either the CityGML city object(s) whose

gml:id value matches ID_0815 or with an exception report in case no matching city object

was found in the 3D City Database.

A single GetFeature operation can also be used to request more than one feature.

<?xml version="1.0" encoding="UTF-8"?>
<wfs:GetFeature service="WFS" version="2.0.0" xmlns:wfs="http://www.opengis.net/wfs/2.0">
 <wfs:StoredQuery id="urn:ogc:def:query:OGC-WFS::GetFeatureById">
 <wfs:Parameter name="id">first gml:id</wfs:Parameter>
 </wfs:StoredQuery>
 <wfs:StoredQuery id="urn:ogc:def:query:OGC-WFS::GetFeatureById">
 <wfs:Parameter name="id">second gml:id</wfs:Parameter>
 </wfs:StoredQuery>
</wfs:GetFeature>

Listing 23: Example GetFeature operation requesting for two city objects.

If a GetFeature request results in more than one city objects or consists of more than one

stored query, the response will be wrapped by one or more <wfs:FeatureCollection>

elements. Please refer to the WFS 2.0 specification for details on the encoding of the response

document.

The GetFeature operation can be influenced by the following XML attributes.

XML attribute O / Ma Default value Description

service M WFS (fixed)
The service attribute indicates the
service type. The value “WFS” is fixed.

version M 2.0.x
The version of the WFS Interface
Standard to be used in the
communication.

294 3D Geodatabase for CityGML 2019

handle O

The handle parameter allows a client to
associate a mnemonic name with the
request that will be used in exception
reports.

outputFormat O
application/gml+xml;

version=3.1

Controls the encoding of the response.
Per default, the WFS uses CityGML /
GML 3.1.1. The outputFormat attribute
may also take the value
“application/json”, in which case the

response is encoded in CityJSON.

count O unlimited
The maximum number of features to be
returned by the WFS service.

resultType O results

If the value of the resultType parameter
is set to "results" the server generates a
response document containing features
that satisfy the operation. If set to “hits”
the server generates an empty
response document indicating the count
of the total number of features that the
operation would return.

aO = optional, M = mandatory

Listing 24: Supported XML attributes of a GetFeature operation.

A KVP-encoded GetFeature request is shown below.

http[s]://[host][:port]/[context_path]/wfs?

SERVICE=WFS&

VERSION=2.0.2&

REQUEST=GetFeature&

STOREDQUERY_ID=http%3A%2F%2Fwww.opengis.net%2Fdef%2Fquery%2FOGC

-WFS%2F0%2FGetFeatureById&

ID=ID_0815

Note that the last parameter ID in the above request is not a WFS parameter but instead is

required by the invoked stored query (see also Listing 22).

The supported KVP parameters are listed in the following table.

KVP parameters O / Ma Default value Description

SERVICE M WFS (fixed) see above

VERSION M 2.0.x see above

NAMESPACES O
Used to specify namespaces and their
prefixes. The format shall be
xmlns(prefix,escaped_url).

OUTPUTFORMAT O
application/gml+xml;

version=3.1
see above

COUNT O unlimited see above

RESULTTYPE O results see above

STOREDQUERY_ID M
The identifier of the stored query to
invoke.

storedquery_parameter
=value

O
Each parameter of the stored query shall
be encoded in KVP as key-value pair.

aO = optional, M = mandatory

Listing 25: Supported KVP parameters of a GetFeature operation.

3D Geodatabase for CityGML 2019 295

7.5 Web-based WFS client

The 3D City Database WFS is shipped with a simple web-based client that is mainly meant to

test the functionality of the server. The client is automatically installed with the server and is

available at the following URL (cf. chapter 7.4.1.2 for details):

http[s]://[host][:port]/[context_path]/wfsclient

The screenshot below shows the user interface of the client rendered in a standard web

browser.

Figure 152: Web-based WFS client.

The user interface consists of two text fields. A user simply enters the XML-encoded

operation request that shall be sent to the server into the upper text field named WFS Request

[1]. Clicking on the Send button forwards the request to the server. As soon as the response

document is received from the WFS server, it is rendered in the lower text field named WFS

Result.

Note: Avoid sending requests through this client that might potentially result in a large

number of city objects contained in the response document. Otherwise the available

main memory of the web browser is quickly exhausted when trying to display the

response document, which renders the browser non-responsive or might even lead to

a program crash. You may want to use the count attribute on the GetFeature

request in order to limit the maximum number of features to be contained in the

1

2

296 3D Geodatabase for CityGML 2019

response document. Alternatively, you can specify the “hits” value for the resultType

attribute in order to only receive the number of features matching your query instead

of the features themselves (cf. chapter 7.4.6).

3D Geodatabase for CityGML 2019 297

8 3DCityDB-Web-Map-Client

Starting from version 3.3.0, the 3DCityDB software package comes with a software package

called 3DCityDB-Web-Map-Client (in this chapter we simply call it “3D web client”) acting

as a web-based front-end for high-performance 3D visualization and interactive exploration of

arbitrarily large semantic 3D city models. The 3D web client has been developed based on the

Cesium Virtual Globe, which is an open source JavaScript library developed by Analytical

Graphics, Inc. (AGI)11. It utilizes HTML5 and the Web Graphics Library (WebGL) as its core

for hardware acceleration and provides cross-platform functionalities like displaying 3D

graphic contents on the web without the needs of additional plugins.

While developing the 3D web client, various extensions have been made to the Cesium

Virtual Globe in order to facilitate users to view and explore 3D city models conveniently.

The major one among those extensions is that the KML/glTF models exported using the

Import/Export tool can now be directly visualized along with imagery and terrain layers

within a web browser using the 3D web client, which additionally can link the KML/glTF

models with table data exported using the Spreadsheet Generator Plugin (SPSHG) and allows

querying the thematic data of every city object. With this newly introduced 3D web client, the

functionalities of the 3DCityDB now range from high-efficient storage and management of

virtual 3D city models according to the CityGML standard up to high-performance

visualization and exploration of them on the web.

Figure 153: Screenshot showing the example of displaying different CityGML top-level features (building,

bridge, tunnel, water, vegetation, transportation etc.) in glTF format in the 3D web client

11 https://www.agi.com/

https://www.agi.com/

298 3D Geodatabase for CityGML 2019

8.1 System requirements

Since the 3D web client utilizes the WebGL-based Cesium Virtual Globe as its 3D geo-

visualization engine, the hardware on which the 3D web client will be run must have a

graphics card installed that supports WebGL. In addition, the web browser in use must also

provide appropriate WebGL support. You can visit the following website to check whether

your web browser supports WebGL or not:

http://get.webgl.org/

The 3DCityDB-Web-Map-Client has been successfully tested on (but is not limited to) the

following web browsers under different desktop operating systems like Microsoft Windows,

Linux, Apple Mac OS X, and even on mobile operating systems like Android and iOS.

 Apple Safari

 Mozilla Firefox

 Google Chrome

 Opera

For best viewing and interaction performance, it is recommended to use Google Chrome.

8.2 Installation and configuration

For convenient use, there is an official web link (see the link below) that can be called to

directly run the 3D web client on your web browser.

https://www.3dcitydb.org/3dcitydb-web-map/1.6.2/3dwebclient/index.html

Note: The number 1.6.2 in URL denotes the version number of the 3D web client. Once the

3D web client has been upgraded in the future, this version number will be adapted to

conform to the current release of the 3D web client. Web links pointing to the previous

software versions will remain valid and accessible online.

The 3D web client is a static web application purely written in HTML and JavaScript and can

therefore be easily deployed by uploading its files to a simple web server. A zip file for the

3D web client can be found in the installation directory of the Import/Export tool within the

subfolder 3d-web-map-client or downloaded via the following GitHub link:

https://github.com/3dcitydb/3dcitydb-web-map/releases

The extracted contents of the zip file should look something like the screenshot below.

http://get.webgl.org/
https://www.3dcitydb.org/3dcitydb-web-map/1.6.2/3dwebclient/index.html
https://github.com/3dcitydb/3dcitydb-web-map/releases

3D Geodatabase for CityGML 2019 299

The 3D web client comes with a lightweight JavaSript-based HTTP server (the file with the

name “server”) that is mainly meant to test the functionality of the 3D web client on your

local machine. For running this web server, the open source JavaScript runtime environment

Node.js is required to be installed on your machine. The latest version of Node.js can be

download via the web link below:

https://nodejs.org/en/

Once the Node.js program has been installed, you need to open a shell environment on your

operating system and navigate to the folder where the server.js file is located, then simply run

the following command to launch the server:

node server.js

Figure 154: Example of running the JavaScript-based web server

Now, the 3D web client is available via the URL below and its user interface should look like

in the following figure:

http://localhost:8000/3dwebclient/index.html

https://nodejs.org/en/

300 3D Geodatabase for CityGML 2019

Figure 155: User interface of the 3D web client

8.3 Using the 3D web client

 Overview of the relevant features and functionalities

Basically, the 3D web client has been developed by extending and customizing the so-called

Cesium Viewer which is a composite widget shipped with Cesium and provides overall

functionalities of a 3D globe such as camera control, rendering geometries and materials,

animation etc. In addition, the Cesium Viewer contains a number of especially attractive

widgets and plugins providing functionalities like querying of geocoding service, switching

between different viewing modes (2D, 2.5D, and 3D view), and handling imagery and terrain

layers, which are commonly useful for a variety of GIS applications. In addition, starting from

version 1.6.0, the web client provides better support for mobile devices, such as a more

compact GUI layout as well as the ability to interact with the web map in first-person view

based on the user’s location in real-time. All these functionalities along with the enhanced

features and functionalities developed for the 3D web client are explained in more detail

below.

3D Geodatabase for CityGML 2019 301

Figure 156: Relevant GUI components of the 3D web client

The 3D Globe [1] is a base Cesium widget that allows the user to navigate through the Earth

map by panning, moving, tilting, and rotating the camera perspective using a mouse or

touchscreen. In addition, the camera perspective can also be controlled by means of the

Navigation Component [2] which is an open source Cesium plugin12 and offers the

same navigation possibilities that can be achieved with mouse or touchscreen. It consists of a

group of widgets, namely a Navigator widget for controlling the camera perspective, a

North Arrows widget for orienting the Earth map towards the north, and a Scale Bar

for estimating the distance between two points on the ground.

The Cesium Viewer provides an especially useful built-in Toolkit [3] containing the

widgets like Geocoder, HomeButton, GeolocationButton, BaseLayerPicker,

and NavigationHelpButton. The view panel of Geocoder can be expanded by

clicking on the button to display an input filed into which the user can enter either an

explicit position value in the form of “[longitude], [latitude]” or an address name to search a

particular location. After pressing the “Enter” key on the keyboard or clicking on the button

, the Geocoding process will be performed using the Bing Maps Locations API according

to the entered location information. Once the target location has been found, the Earth map

will be automatically adjusted to the returned location and zoomed to the bounding box with

the best fit with the camera perspective. For example, if you want to search the position

(longitude = 11.56786, Latitude = 48.14900) where the Technical University of Munich is,

12 https://github.com/alberto-acevedo/cesium-navigation

1

3

2

4

5

6

302 3D Geodatabase for CityGML 2019

the input field of the Geocoder can be filled with the text value of “11.56786, 48.14900”

and the result should look like the following figure.

Figure 157: Searching the main building of the Technical University of Munich by using the Geocoder widget

The HomeButton helps the user to quickly reset the camera perspective to the default

status (cf. Figure 155). In addition, the GeolocationButton provides some

geolocation-based features such as flying to the user’s current location on the 3D map and

displaying the first-person view in real-time on mobile devices, which shall be explained in

more details in Section 1.

In most GIS applications, the term base layer (or basemap) is generally considered as a

background layer on the map using, for example, satellite imagery and terrain model, to help

people to quickly identify the locations and orientations from a certain camera perspective.

Per default, Cesium comes with a number of selectable imagery layers provided by different

mapping services, such as Bing Maps, OpenStreetMap, ESRI Maps etc. In addition, a terrain

layer so-called STK World Terrain13 is available for showing worldwide 3D elevation data

with an average grid resolution of 30 meters. All these base layers (imagery and terrain

layers) can be controlled by the BaseLayerPicker widget (cf. the following figure) which

has a view panel for listing all the available base layers represented by their names and

respective icons and allows the user to select the desired one. For example, when an icon

representing the OpenStreetMap is selected, a new instance of the OpenStreetMap imagery

layer will be created to replace the imagery layer that is currently in use. Similarly, the terrain

layer can be independently selected and added to the Earth map to overlap with the selected

imagery layer.

13 Due to changes in Cesium Terms of Service as well as the introduction of the new commercial Cesium ion

platform starting from September 1st 2018, the STK World Terrain layer is replaced by the Cesium World

Terrain hosted by Cesium ion (https://cesium.com/content/cesium-world-terrain).

3D Geodatabase for CityGML 2019 303

Figure 158: Per default available base layers listed in the BaseLayerPicker widget

The last widget contained within the Cesium Toolkit [3] (cf. Figure 156) is the so-called

NavigationHelpButton for showing brief instructions on how to navigate the Earth

map with mouse (typically for desktop and laptop PCs) and touchscreen (typically for smart

phones and tablet PCs). By clicking on the button, the corresponding view panel (cf. the

following figure) will be shown on the upper-right corner of the 3D web client.

304 3D Geodatabase for CityGML 2019

Figure 159: The NavigationHelpButton widget showing the instructions for navigating Earth map

The next widget is the so-called CreditContainer [4] (cf. Figure 156) which displays a

collection of credits with respect to the software and data providers that have been involved in

the development and use of the 3D web client. These credits mainly include the mapping

services (depending on the selected base layer, e.g. Bing Maps), the 3D geo-visualization

engine (Cesium Virtual Globe), and the development provider of the 3D web client

(3DCityDB), which are all represented with their icons, descriptions, and hyperlinks

referencing to their respective homepages.

The majority of the functionalities specially provided by the 3D web client are controlled by

the Toolbox widget [5] (cf. Figure 156) which is an extended module based on the Cesium

Viewer for integrating and controlling the user-provided data in different formats, namely

KML/glTF modes, thematic data (online spreadsheet), Web Map Service (WMS) data, and

digital terrain model (DTM) on the one hand. On the other hand, the user interaction with 3D

city models can also be aided by this Toolbox widget which allows, for example,

deselecting, shadowing, hiding and showing 3D objects, as well as exploring them from

different view perspectives using third-party mapping services like Microsoft Bing Maps with

oblique view, Google Streetview, and a combined version (DualMaps).

Note: Starting from September 2018, a Cesium ion API key or a Bing Maps API key is

required in order to provide access to the Cesium World Terrain as well as the Bing

Maps Services. These can be given as the parameter ionToken=<your_ion_token>

and bingToken=<your_bing_token> in the client’s URL. If no valid token is present,

Open Street Map shall be selected as the default imagery and Nominatim shall be

activated as the default geocoder. For more information, please refer to:

 https://cesium.com/legal/terms-of-service/

 https://www.microsoft.com/en-us/maps/product/terms

 https://www.openstreetmap.org/copyright/en

https://cesium.com/legal/terms-of-service/
https://www.microsoft.com/en-us/maps/product/terms
https://www.openstreetmap.org/copyright/en

3D Geodatabase for CityGML 2019 305

The visualization of the 3D city model with large data size often result in significant

performance issue in most 3D web applications. In order to overcome this troublesome issue,

a tiling strategy has been implemented within the 3D web client to support for efficient

displaying of large pre-styled 3D visualization models in the form of tiled datasets exported

from the 3DCityDB by using the KML/COLLADA/glTF Exporter. This tiling strategy

utilizes the multi-threading capabilities of HTML5, so that the time-costly operations such as

parsing of multiple 3D objects can be delegated to a background thread running in parallel. At

the same time, for data layer, another thread monitors the interactions with the virtual camera

and takes care of determining which the data tiles should be loaded and unloaded according to

their current visibility and the display size on the screen. Moreover, this tiling strategy

supports caching mechanism allowing the data tiles loaded from an earlier computation to be

temporarily stored in a cache, from which the data tiles can be loaded and rendered much

faster than reloading them again from the remote server. Of course, a larger number of cached

data tiles will consume more memory and may cause a memory overflow of the web browser.

In order to avoid this, the 3D web client provides a so-called Status Indicator widget

[6] (cf. Figure 156) which can display the real-time status of the amount of showed and

cached data tiles and can be used to help the user to conveniently monitor and control the

memory consumed by the 3D web client.

While streaming the tiled 3D visualization models, each data tile requires at least an

asynchronous HTTP (Hypertext Transfer Protocol) request (AJAX) to fetch the corresponding

KML/glTF files from the remote data server. This server must support CORS (Cross-Origin

Resource Sharing) to get around the cross-domain restrictions.

Note: Alternatively, the open specification Cesium 3D Tiles can also be employed to stream

massive heterogeneous 3D geospatial datasets14. This is supported in 3DCityDB Web

Map Client version 1.6.0 or later.

 Handling KML/glTF models with online spreadsheet

As mentioned before, the 3D web client extends the Cesium Virtual Globe to support efficient

displaying, caching, dynamic loading and unloading of large pre-styled 3D visualization

models in the form of tiled KML/glTF datasets exported the 3DCityDB using the

KML/COLLADA/glTF Exporter. However, there is a major problem regarding the graphical

visualization of semantic 3D city models as their attribute information is completely or partly

lost in the 3D graphics formats. This issue has been considered and solved within the 3D web

client by supporting the explicit linking of the 3D visualization models with thematic data

which can be exported using the Spreadsheet Generator Plugin (SPSHG) and uploaded to an

online spreadsheet (Google Fusion Table15) stored and published via the Google Cloud. This

strategy can therefore offer the possibilities for collaborative and interactive data exploration

of semantic 3D city models by means of querying the thematic data of the selected city object.

The corresponding system architecture is illustrated in the following figure.

14 https://github.com/AnalyticalGraphicsInc/3d-tiles
15 https://fusiontables.google.com/

306 3D Geodatabase for CityGML 2019

Figure 160: Coupling an online spreadsheet with a 3D visualization model (i.e. a KML/glTF visualization

model) in the cloud [Herreruela et al. 2012].

Figure 161: Example of an online spreadsheet (Google Fusion Table)

Similar to the structure of a database table, the first row of the online spreadsheet defines the

attribute names, and the further rows store the respective attribute values for each 3D object.

The logical links between the 3D models and the respective rows are established via a specific

column within the spreadsheet, namely the GMLID column, which contains the unique

identifiers of the 3D objects. Each further column is used to represent one attribute of the 3D

object. By using the freely available Google Drive application, all users having access to the

3D Web Client

read

read

3D City Database

Export
e.g. KML/glTF

Online

Spreadsheet in

the Cloud

logical link

Integration

export

Visualization model

on the web

3D Geodatabase for CityGML 2019 307

online spreadsheet are able to edit it, for example to modify attribute values or insert new

attribute fields, in order to keep the contents up-to-date without affecting the original

(possibly official) 3D city model. Besides, such a detachment of the thematic data from the

3D visualization models also has the advantage that any update of thematic contents can

exclusively take place within the online spreadsheet and therefore does not require exporting

and deploying the 3D visualization models again.

In order to add a KML/glTF data layer along with its linked online spreadsheet to the 3D web

client, the parameters must be properly specified (some of which are optional) on the

corresponding input panel [1] (cf. Figure 162) which can be expanded and collapsed by

clicking on the Add / Configure Layer button.

Note: All default parameter values used in the 3D web client were chosen accordingly to the

standard settings (e.g., the standard predefined tile size is 125m x 125m) specified in

the preference settings of the KML/COLLADA/glTF Exporter (cf. section 5.6.3.1).

The parameter name with the suffix “(*)” denotes that this parameter is mandatory;

otherwise it is optional.

Figure 162: The input panel [1] for adding a new KML/glTF data layer and the extended Geocoder widget [2]

allowing to search a 3D object also by its gmlId

First of all, the web link of the master JSON file (cf. section 5.5) holding the relevant meta-

information of this data layer has to be entered into the input field URL(*). In the input field

Name(*), a proper layer name must be specified which will be listed at the top of the input

panel [1] once the KML/glTF data layer has been successfully loaded into the 3D web client.

The parameter thematicDataUrl denotes the URL of an online spreadsheet (Google Fusion

1
2

308 3D Geodatabase for CityGML 2019

Table) which stores the attribute data. This parameter is optional and is only required if the

user wants to attach thematic data to the KML/glTF visualization model.

The next optional parameter cityobjectsJsonUrl holds the URL of the JSON file which can be

generated automatically by using the KML/COLLADA/glTF Exporter (cf. section 5.6.3.1).

This JSON file contains a list of GMLIDs of all 3D objects which were exported and might be

distributed over different tiles. For every 3D object, it is also stored in which tile it is

contained together with its envelope represented using a bounding box in WGS84 lat/lon.

These location information can be used to search for a certain 3D object with the help of the

Geocoder widget [2], which has been extended to support a specific geocoding process

performed in the following manner: In the input field, either a GMLID of a 3D object or an

address can be entered. If an object with the given GMLID is found in the JSON file, the

camera perspective will be adjusted to look at the center point of the 3D object with a proper

oblique view. If not, the Bing Maps Locations API will be automatically called and the map

view will be adjusted to the returned location and bounding box.

The combination of the parameters minLodPixels and maxLodPixels defines the minimum and

maximum limit of the visibility range for each data layer to control the dynamic loading and

unloading of the data tiles. The maximum visibility range can start at 0 and end at an infinite

value expressed as -1. Optionally, the user can directly specify the two parameter values

within the 3D web client. Otherwise, the parameter values will be achieved from the master

JSON file, which also contains the parameters minLodPixels and maxLodPixels and their

values which have been specified using the KML/COLLADA/glTF Exporter before

performing the export process.

With these two parameters, the 3D web client implements the so-called Level of Details

(LoD) concept which is a common solution being used in 3D computer graphics and GIS (e.g.

KML NetworkLinks) for efficient streaming and rendering of tiled datasets. According to the

LoD concept, the data tiles with higher resolution should be loaded and visualized when the

observer is viewing them from a short distance. When data tiles are far away from the

observer, the data tiles with higher resolution should be substituted by the data tiles with

lower resolution. In order to realize this LoD concept in the 3D web client, each data tile

which is being intersected with the current view frustum will be projected onto the screen

while navigating the Earth map. Subsequently, the diagonal length of the projected area on the

screen will be calculated by the 3D web client to determine whether the respective data tile

should be loaded or unloaded. If the diagonal length is greater than minLodPixels and less

than maxLodPixels, the respective data tile will be loaded and displayed; otherwise it will be

hidden from display and unloaded. Of course, all data tiles lying outside of the view frustum

are unloaded and invisible anyway.

3D Geodatabase for CityGML 2019 309

Figure 163: Efficient determination of which data tiles should be loaded according to the user-defined visibility

range in screen pixel

Loading massive amounts of data tiles often result in poor performance of the 3D web client

or even memory overload of the web browser. This could happen when, for example, the

visibility range (determined by the parameters minLodPixels and maxLodPixels) starts at a

very small value and ends at an infinite size. In this case, each data tile will always be

visualized even though it only takes up a very small screen space. This issue can be avoided

by a proper setting of the parameter maxCountOfVisibleTiles which specifies the maximum

number of allowed visible data tiles. When this limit is reached, any additional data tiles that

are farthest away from the camera will not be shown, regardless the size of screen space they

occupy. Per default, this parameter receives a value of 200, which is appropriate in most use

cases. However, depending on data volume of each tile and the hardware you use, this

parameter value has to be adjusted by means of practical tests.

As mentioned before, the 3D web client implements a caching mechanism allowing for high-

speed reloading of those data tiles that have been loaded before and which are stored in the

memory of the web browser. In order to prevent memory overload, the parameter

maxSizeOfCachedTiles can be applied for specifying the maximum allowable cache size

expressed as a number of data tiles. With this parameter, the 3D web client implements the

so-called Least Recently Used (LRU) algorithm which is a caching strategy being widely used

in many computer systems. According to this caching algorithm, newly loaded data tiles will

be successively put into the cache. When the cache size limit is reached, the 3D web client

will remove the least recently visualized data tiles from the cache. By default, the value of this

parameter is set to 200 and can of course be increased to achieve a better viewing experience

depending on the hardware you use.

310 3D Geodatabase for CityGML 2019

Usage example:

In this example, a tiled KML dataset containing around 8000 LoD1 buildings in the

Manhattan district of New York City (NYC) will be visualized on the 3D web client. This

KML dataset is derived from the semantic 3D city model of New York City (NYC)16 which

has been created by the Chair of Geoinformatics at Technical University of Munich on the

basis of datasets provided by the NYC Open Data Portal17. The following parameter values

should be entered into the corresponding input fields:

 url: https://www.3dcitydb.org/3dcitydb/fileadmin/public/3dwebclientprojects/NYC-Model-

20170501/Building_gltf/Building_gltf_collada_MasterJSON.json

 name: NYC_Manhattan_Buildings

 thematicDataUrl:

https://www.google.com/fusiontables/DataSource?docid=1iG6_vYe7JGTNAUwFw7TpD8EMO-

iQe6gSpa6MJlCF

 cityobjectsJsonUrl:

https://www.3dcitydb.org/3dcitydb/fileadmin/public/3dwebclientprojects/NYC-Model-

20170501/Building_gltf/Building_gltf.json

 minLodPixels: 100

 maxLodPixels: -1

 maxSizeOfCachedTiles: 200

 maxCountOfVisibleTiles: 200

After clicking on Add layer, a data layer will be loaded into the 3D web client and the

corresponding layer name NYC_Manhattan_Buildings will be listed above the input panel.

The Earth map can be zoomed to the extent of the loaded data layer by double-clicking on the

layer name. The parameter values of the data layer (its radio button must be activated) can be

changed and applied at any time by clicking on the Save layer settings button.

Figure 164: Screenshot showing how to add a new KML/glTF data layer into the 3D web client

16 https://www.gis.bgu.tum.de/en/projects/new-york-city-3d/
17 https://nycopendata.socrata.com/

https://www.3dcitydb.org/3dcitydb/fileadmin/public/3dwebclientprojects/NYC-Model-20170501/Building_gltf/Building_gltf_collada_MasterJSON.json
https://www.3dcitydb.org/3dcitydb/fileadmin/public/3dwebclientprojects/NYC-Model-20170501/Building_gltf/Building_gltf_collada_MasterJSON.json
https://www.google.com/fusiontables/DataSource?docid=1iG6_vYe7JGTNAUwFw7TpD8EMO-iQe6gSpa6MJlCF
https://www.google.com/fusiontables/DataSource?docid=1iG6_vYe7JGTNAUwFw7TpD8EMO-iQe6gSpa6MJlCF
https://www.3dcitydb.org/3dcitydb/fileadmin/public/3dwebclientprojects/NYC-Model-20170501/Building_gltf/Building_gltf.json
https://www.3dcitydb.org/3dcitydb/fileadmin/public/3dwebclientprojects/NYC-Model-20170501/Building_gltf/Building_gltf.json

3D Geodatabase for CityGML 2019 311

Users are also able to control the visibility of the selected data layers by deactivating its

checkbox or clicking on the Remove selected layer button to completely remove it from the

3D web client (cf. the following two screenshots)

Figure 165: Screenshot showing how to hide a KML/glTF data layer

Figure 166: Screenshot showing how to remove a KML/glTF data layer from the 3D web client

312 3D Geodatabase for CityGML 2019

 Handling Web Map Service data

Cesium supports adding additional imagery layer to the Earth map by using the OGC

compliant Web Map Service (WMS). The 3D web client provides a simple widget panel

which allows the user to easily add and remove arbitrary number of WMS layers. The widget

panel [1] (marked in the following figure) can be expanded and collapsed by clicking on the

Add WMS-Layer button on the widget panel.

Figure 167: The input panel [1] for adding a new WMS layer and the BaseLayerPicker widget [2] where

the added WMS layers will be listed together with the per default available imagery layers

A user-defined name for labelling the WMS layer has to be firstly specified via the name(*)

input field. In addition, the iconUrl parameter points to the URL address of an icon image,

which will be listed together with the user-defined layer name in the BaseLayerPicker

panel [2]. When the mouse pointer is over the icon image, a tooltip will appear which can be

specified in the tooltip(*) input field. The url parameter value corresponds to the URL address

of the WMS server that provides the imagery contents of a WMS layer. According to the

WMS specification, a WMS layer is allowed to contain one or more sublayers (listed in the

WMS Capabilities file) whose names must be separated by comma and entered into the input

field layers(*). Besides the standard WMS HTTP request parameters, additional parameters

might be required by some WMS servers. In this case, such additional parameters must be

formatted as key=value pairs separated by the “&” character and entered into the

additionalParameters input field. The proxyUrl parameter helps the 3D web client to get

around the cross-domain issue when performing WMS requests. Since most of the WMS

server do not support CORS, a proxy running behind the 3D web client is required. If you use

the JavaScript-based HTTP server shipped with the 3D web client, you don’t need to change

the default value, since there already exists a built-in proxy running with the relative path

1

2

3D Geodatabase for CityGML 2019 313

“/proxy/”. Otherwise, this parameter value must be adjusted according to the path of the proxy

in use.

Usage example:

In this example, a WMS imagery layer provided by the Vorarlberg State Government18 will

be added to and displayed in the 3D web client. The following parameter values should be

entered into the corresponding input fields:

 name: Vorarlberg_Aerial_Photography

 iconUrl: http://cdn.flaggenplatz.de/media/catalog/product/all/4489b.gif

 tootip: Vorarlberg Aerial Photography taken during the winter 2015

 url: http://vogis.cnv.at/mapserver/mapserv

 layers: wi2015_20cm

 additionalParameters: map=i_luftbilder_r_wms.map

 proxyUrl: /proxy/

Figure 168: Example showing how to add a new WMS layer to the 3D web client

As shown in the figure above, once the parameter settings have been completed, the WMS

layer can be loaded by clicking on the Add WMS layer button [3] and its icon image together

with its label name [4] will be listed on the BaseLayerPicker widget. You can use the

Geocoder widget [5] to zoom the Earth map to the region of Vorarlberg state and check the

added WMS layer. Clicking on the Remove WMS layer button [6], the WMS layer will be

removed and substituted with the Bing Maps Aerial that is the first item listed on the

BaseLayerPicker widget.

18 http://www.vorarlberg.at/

3

4

5

6

http://cdn.flaggenplatz.de/media/catalog/product/all/4489b.gif
http://vogis.cnv.at/mapserver/mapserv

314 3D Geodatabase for CityGML 2019

 Handling Digital Terrain Models

Cesium offers the possibility of high-performance streaming and rendering of Digital Terrain

Models (DTM) for the realistic representation of the Earth’s surface. Cesium provides per

default two available terrain layers, which can be selected in the BaseLayerPicker [2] widget.

The first one is the so-called WGS84 Ellipsoid (default terrain layer) which approximates the

Earth’s surface using a smooth ellipsoid surface with a constant height value of 0. The other

one is the so-called STK World Terrain19 using a worldwide 3D elevation data with an

average grid resolution of 30 meters, which is sufficient in many use cases.

For specific application cases, high-resolution Digital Terrain Models might be required. For

this case, the 3D web client provides a simple widget to facilitate handling the terrain data that

must be created in a specific terrain format (heightmap or quantized-mesh) defined by

Cesium. There exists an open source software tool Cesium Terrain Builder20 for creating

terrain data in heightmap format. The created terrain data is generated in a hierarchical folder

structure according to the TMS tiling schema and can be easily published on the web by

uploading the terrain data files to a CORS-enabled web server.

The input panel [1] on the 3D web client for adding and removing terrain layers can be

expanded and collapsed by clicking on the Add Terrain-Layer button.

Figure 169: The input panel [1] for adding a new terrain layer and the BaseLayerPicker widget [2] where

the added terrain layers will be listed together with the per default available base layers

19 Replaced by Cesium World Terrain starting from September 1st 2018, see Footnote 13 on Page 255.
20 https://github.com/geo-data/cesium-terrain-builder

1

2

3D Geodatabase for CityGML 2019 315

For adding a new terrain layer, the input fields name(*), iconUrl(*), and tooltip(*) in the input

panel [1] have to be filled with a proper label name, an URL of an icon image, and a short

tooltip respectively. When a terrain layer has been loaded, its icon image together with its

label name will be listed in the BaseLayerPicker panel [2]. The tooltip will automatically

appear when the mouse is moved over the respective icon image. The url parameter points to

the URL of the web server folder where the terrain data are stored.

Usage example:

In this example, a high-resolution (0.5m) Digital Terrain Model provided by the Vorarlberg

State Government will be added to the 3D web client. This terrain data was created in

heightmap format using the open source tool Cesium Terrain Builder. Here, the following

parameter values should be entered into the corresponding input fields:

 name: Vorarlberg_DTM

 iconUrl: https://cdn.flaggenplatz.de/media/catalog/product/all/4489b.gif

 tootip: Digital Terrain Model of Vorarlberg

 url: https://www.3dcitydb.org/3dcitydb/fileadmin/mydata/Vorarlberg_Demo/Vorarlberg_DTM

Figure 170: Example showing how to add a new terrain layer to the 3D web client

As shown in the figure above, once the parameter settings have been completed, the terrain

layer can be loaded by clicking on the Add Terrain layer button [3] and its icon image

together with its label name [4] will be listed on the BaseLayerPicker widget. You can use the

Geocoder widget [5] to zoom the Earth map to the region of Vorarlberg state and check the

loaded terrain data. Clicking on the Remove Terrain layer button [6], the terrain layer will be

removed and substituted with the WGS84 Ellipsoid terrain layer.

4

3

5

6

https://cdn.flaggenplatz.de/media/catalog/product/all/4489b.gif
https://www.3dcitydb.org/3dcitydb/fileadmin/mydata/Vorarlberg_Demo/Vorarlberg_DTM

316 3D Geodatabase for CityGML 2019

 Interaction with 3D objects

The 3D web client supports rich model interaction such as highlighting of 3D objects on

mouse over and mouse click. More than one 3D object can be selected by Ctrl-clicking on

them and can also be hidden and redisplayed in the 3D web client interactively. Besides, the

user is able to create a screenshot image of the current map view (including the highlighted

and hidden 3D objects) or print it directly via the web browser. Moreover, when a 3D object

is selected, it can be visually inspected in other third-party mapping applications (Bing Maps,

Google Streetview, OpenStreetMap and DualMaps) from multiple view perspectives such as

oblique view, street view, or a combined version.

For the sake of clarity, the above mentioned functionalities will be illustrated with the help of

a number of screenshots generated based on the online demo Semantic 3D City Model of

Berlin which shows all Berlin’s buildings (> 550,000) with textured 3D geometries and many

thematic attributes in the 3D web client. You can find the link of this demo via the following

web page:

https://github.com/3dcitydb/3dcitydb-web-map

Once the demo was opened in your web browser, you may need to use the Geocoder widget

to zoom the Earth map to the building object with the GMLID “BLDG_0003000b0009a940”.

Figure 171: By clicking on a building object it will automatically be highlighted and its attribute information

will be queried from a Google Fusion Table and displayed in tabular form on the right side of the 3D web client

https://github.com/3dcitydb/3dcitydb-web-map

3D Geodatabase for CityGML 2019 317

Figure 172: By clicking on the dropdown list Show the selected object in External Maps, the user can select one

of the given options to explore the selected building object in the chosen mapping application which will be

opened in a new browser window or tab

Figure 173: If the option DualMaps has been chosen, the selected building will be shown in a so-called mash-up

web application linking different view perspectives, e.g. Google 2D map view, Google Streetview, and Bing

Maps oblique view

318 3D Geodatabase for CityGML 2019

Figure 174: A group of building objects can be interactively selected by Ctrl-clicking. Deactivating the selection

of a certain building object can be done by Ctrl-clicking on it again

Figure 175: The selected building objects can be hidden by clicking on the button Hide selected Objects. The

GMLIDs of the selected (highlighted) and hidden building objects can be explored by clicking the drop-down

buttons Choose highlighted Object and Choose hidden Object respectively

3D Geodatabase for CityGML 2019 319

Figure 176: The hidden objects can be shown on the 3D web client again by clicking on the button Show Hidden

Objects

Figure 177: The objects selection and along with the highlighting effect can be deactivated by clicking on the

button Clear Highlighting

320 3D Geodatabase for CityGML 2019

Figure 178: A screenshot of the current view can be created directly within the 3D web client by clicking on the

button Create Screenshot or Print current view

Figure 179: Once the button Print current view has been clicked on, a printer settings dialog (differs for

different web browsers) will appear giving a preview of the screenshot file to be printed

3D Geodatabase for CityGML 2019 321

Figure 180: Shadow visualization of the 3D city models can also be activated and deactivated by clicking the

Toggle Shadows button

Figure 181: It is possible to create a scene link saving the current status of the 3D web client by clicking on the

Generate Scene Link button. This scene link encodes the information about the title of the web site, activation

status of the shadow visualization, parameters of the current loaded layers, the camera perspective etc. The

created scene link can be stored as a browser bookmark or favorite and can also be sent e.g. by email to friends,

colleagues, project partners etc. When they open the link, the same scene will open in their browsers.

322 3D Geodatabase for CityGML 2019

 Mobile Support Extension

Starting from version 1.6.0, the 3DCityDB-Web-Map-Client is equipped with an extension

that provides better support for mobile devices. The extension comes with a built-in mobile

detector, which can automatically detect and adjust the client's behaviors accordingly to

whether the 3D web client is operating on a mobile device. The extension has been tested on

several smartphones and tablets running Android and iOS.

Some of the most important mobile features enabled by this extension are listed as follows:

1. A more lightweight graphical user interface

In order to make the best use of the limited screen real-estate available on mobile devices,

some elements are removed or hidden from the web client, such as credit texts and logos,

as well as some of Cesium's built-in navigation controls that can easily be manipulated

using touch gestures (see Figure 182).

The main toolbox now scales to fit to the screen size. In case of excess lines/length, the

toolbox becomes scrollable (see Figure 183).

The infobox displayed when a city object (e.g. building) is clicked is now displayed in

fullscreen with scrollable contents, as illustrated in Figure 184 below.

Figure 182: The 3DCityDB Web Map Client on mobile devices

3D Geodatabase for CityGML 2019 323

Figure 183: The main toolbox on mobile devices

Figure 184: The infobox on mobile devices

2. Geolocation-based features

The web client contains a new GPS button (located on the top right corner in the view

toolbar) providing new functionalities involving user's current location and orientation (see

Figure 185 and Figure 186). Namely:

 Location "snapshot" (single-click): shows the user's current position and orientation.

 Real-time Orientation Tracking (double-click): periodically shows the user's current

orientation with fixed location.

 Real-time Compass Tracking + Position (triple-click) or the "First-person View"

mode: periodically shows the user's current orientation and position.

Figure 185: From left to right, the 3 modes of geolocation-based features:

Location snapshot, Real-time orientation tracking and First-person view

324 3D Geodatabase for CityGML 2019

Figure 186: Real-time orientation tracking and First-person View on mobile devices

To disable real-time tracking, simply either click on the button again to return to

"snapshot" mode or hold the button for 1 second, the camera will then ascend to a

higher altitude of the current location.

Note that the mobile extension makes use of the Geolocation API and the DeviceOrientation

API in HTML5. The Geolocation API only works via HTTPS since Google Chrome 50.

Therefore, make sure the client is called from a secured page (via SSL/HTTPS). Additionally,

permission to retrieve current orientation and location must be granted by the user.

 Using the 3D Web Client from the 3DCityDB homepage

If you want to try the 3DCityDB-Web-Map-Client or do not have a possibility to install it on

your own web server, you can use the pre-installed version from the 3DCityDB homepage

under the URL

https://www.3dcitydb.org/3dcitydb-web-map/1.6/3dwebclient/index.html

This is a stable link and can be used for long-time working demo links. If new versions will

be released in the future, the old versions remain functional on the server and the new

versions will be installed in new subfolders (i.e. next to the folder ‘1.6’).

https://www.3dcitydb.org/3dcitydb-web-map/1.6/3dwebclient/index.html

3D Geodatabase for CityGML 2019 325

9 3DCityDB Docker Images

Docker is a widely used virtualization technology that makes it possible

to pack an application with all its required resources into a standardized

unit - the Docker Container. Software encapsulated in this way can run

on Linux, Windows, macOS and most cloud services without any

further changes. Docker containers are lightweight compared to

traditional virtualization environments that emulate an entire operating

system because they contain only the application and all the tools,

program libraries, and files it requires.

9.1 Getting started

The Docker Container for 3D City Database is based on the Open Source database

management system PostgreSQL and the PostGIS extension for spatial data. The image is

freely available via DockerHub21 and can be directly downloaded and used. The detailed

documentation and source code can be found on the GitHub project page (see below). All that

is needed is a Docker installation on your system. The time-consuming installation of a

database server, its configuration, the installation of a database extension for spatial data and

the setup of the 3D City Database data model are a thing of the past. An example for setting

up a 3DCityDB using Docker from a command line is given below:

Windows

docker run -dit --name citydb-container -p 5432:5432^

 -e "SRID=31468"^

 -e "SRSNAME=urn:adv:crs:DE_DHDN_3GK4*DE_DHN92_NH"^

 tumgis/3dcitydb-postgis

Linux

docker run -dit --name citydb-container -p 5432:5432 \

 -e "SRID=31468" \

 -e "SRSNAME=urn:adv:crs:DE_DHDN_3GK4*DE_DHN92_NH" \

 tumgis/3dcitydb-postgis

Note: In the examples above the long commands are broken to several lines for readability

using the Bash (\) or CMD (^) line continuation.

The docker run command fetches the most recent version of the Docker image from the

Docker hub. This image includes a PostgreSQL/PostGIS installation. The 3DCityDB schema

is being installed and a new and empty 3DCityDB database is created using the SRID 31468

and GML SRSName “urn:adv:crs:DE_DHDN_3GK4*DE_DHN92_NH”. After completion of

the command the user can directly start importing a CityGML file into the database using the

Importer/Exporter tool, which must have been installed locally.

21 https://hub.docker.com/u/tumgis/

https://hub.docker.com/u/tumgis/

326 3D Geodatabase for CityGML 2019

9.2 Further images

In addition to the Docker Image for the 3D City Database, Docker Images for the 3DCityDB

Web-Feature-Service (WFS) and the 3DCityDB 3D-Web-Map-Client are also available.

Docker Compose22 files are available for orchestrating the individual services. This allows for

example, that a single command call can be used to create a 3DCityDB linked to a 3DCityDB

WFS, which makes the data from the database accessible via a standardized web interface.

Downloads, documentation and source code

The documentation and source code for the individual images can be found on the Github

project pages listed below. If you experience any problems or want to contribute, please

submit an Github issue or pull request.

3DCityDB PostGIS

 Documentation, source code https://github.com/tum-gis/3dcitydb-docker-postgis

 Image download https://hub.docker.com/r/tumgis/3dcitydb-postgis/

3DCityDB Web Feature Service (WFS)

 Documentation, source code https://github.com/tum-gis/3dcitydb-wfs-docker

 Image download https://hub.docker.com/r/tumgis/3dcitydb-wfs/

3DCityDB 3D Web Map Client

 Documentation, source code https://github.com/tum-gis/3dcitydb-web-map-docker

 Image download https://hub.docker.com/r/tumgis/3dcitydb-web-map/

3DCityDB Docker Compose service orchestration

 Download, Documentation, and source code

https://github.com/tum-gis/3dcitydb-docker-compose

22 https://docs.docker.com/compose/

https://github.com/tum-gis/3dcitydb-docker-postgis
https://hub.docker.com/r/tumgis/3dcitydb-postgis/
https://github.com/tum-gis/3dcitydb-wfs-docker
https://hub.docker.com/r/tumgis/3dcitydb-wfs/
https://github.com/tum-gis/3dcitydb-web-map-docker
https://hub.docker.com/r/tumgis/3dcitydb-web-map/
https://github.com/tum-gis/3dcitydb-docker-compose
https://docs.docker.com/compose/

3D Geodatabase for CityGML 2019 327

10 References

3DCityDB Homepage, http://www.3dcitydb.org/ (accessed September 2018).

Active Server Pages Reference, Microsoft, Weblink (accessed September 2018):

http://msdn.microsoft.com/en-us/library/ms526064.aspx

Barners, M., Finch, E. L. (2008): COLLADA - Digital Asset Schema Release 1.5.0. The

Khronos Group Inc., Sony Computer Entertainment Inc, April 2008.

http://www.khronos.org/files/collada_spec_1_5.pdf (accessed September 2018)

Berlin 3D City Model, Business Location Center Berlin, Weblink (accessed September 2018):

https://www.businesslocationcenter.de/en/WA/B/seite0.jsp

Borrmann, A., Kolbe, T. H., Donaubauer, A., Steuer, H., Jubierre, J. R., Flurl, M. (2015):

Multi-scale geometric-semantic modeling of shield tunnels for GIS and BIM

applications. Computer-Aided Civil and Infrastructure Engineering (Vol. 30, No. 4).

Weblink (accessed September 2018): http://dx.doi.org/10.1111/mice.12090

Chaturvedi, K., Yao, Z., Kolbe, T. H. (2015): Web-based Exploration of and Interaction with

Large and Deeply Structured Semantic 3D City Models using HTML5 and WebGL. In:

Proc. of the 35th Annual Conference of the German Society for Photogrammetry,

Remote Sensing and Geoinformation (DGPF), Weblink (accessed September 2018):

http://www.dgpf.de/src/tagung/jt2015/proceedings/papers/34_DGPF2015_Chaturvedi

_et_al.pdf

CityGML Homepage, http://www.citygml.org (accessed September 2018).

Coffman, E.G. Jr., Garey, M. R., Johnson, D.S., Tarjan, R.E. (1980): Performance bounds for

level-oriented two-dimensional packing algorithms. In: SIAM Journal on Computing 9

(1980), pp. 801–826.

Döllner, J., Buchholz, H., Brodersen, F., Glander, T., Jütterschenke, S., Klimetschek, A.

(2005): Smart Buildings – A Concept for Ad-Hoc Creation and Refinement of 3D

Building Models. In: Kolbe, T. H., Gröger, G. (eds.): Proceedings of the 1st

International Workshop on Next Generation 3D City Models, Bonn, Germany, June

2005, EuroSDR Publications.

Döllner, J., Kolbe, T. H., Liecke, F., Sgouros, T., Teichmann, K. (2006): The Virtual 3D City

Model of Berlin - Managing, Integrating, and Communicating Complex Urban

Information. In: Proceedings of the 25th Urban Data Management Symposium UDMS

2006 in Aalborg, Denmark, May 15-17. Weblink (accessed September 2018):

http://mediatum.ub.tum.de/doc/1145759/484057.pdf

Fiutak, G.; Marx, C.; Willkomm, P.; Donaubauer, A.; Kolbe, T. H. (2018): Automatisierte

Generierung eines digitalen Landschaftsmodells in 3D. PFGK18 - Photogrammetrie -

Fernerkundung - Geoinformatik - Kartographie, 37. Jahrestagung in München 2018

(Publikationen der Deutschen Gesellschaft für Photogrammetrie, Fernerkundung und

http://www.3dcitydb.org/
http://msdn.microsoft.com/en-us/library/ms526064.aspx
http://www.khronos.org/files/collada_spec_1_5.pdf
https://www.businesslocationcenter.de/en/WA/B/seite0.jsp
http://dx.doi.org/10.1111/mice.12090
http://www.dgpf.de/src/tagung/jt2015/proceedings/papers/34_DGPF2015_Chaturvedi_et_al.pdf
http://www.dgpf.de/src/tagung/jt2015/proceedings/papers/34_DGPF2015_Chaturvedi_et_al.pdf
http://www.citygml.org/
http://mediatum.ub.tum.de/doc/1145759/484057.pdf

328 3D Geodatabase for CityGML 2019

Geoinformation (DGPF) e.V. 27), Deutsche Gesellschaft für Photogrammetrie,

Fernerkundung und Geoinformation e.V., 888-902.

Foley, J., van Dam, A,. Feiner, S., Hughes, J. (1995): Computer Graphics: Principles and

Practice. Addison Wesley, 2nd Ed.

glTF - Efficient, Interoperable Transmission of 3D Scenes and Models, Khronos, Weblink

(accessed September 2018): https://www.khronos.org/gltf

Google Elevation API, https://developers.google.com/maps/documentation/elevation/

(accessed September 2018).

Gröger, G., Kolbe, T. H., Schmittwilken, J., Stroh, V., Plümer, L. (2005): Integrating

versions, history and levels-of-detail within a 3D geodatabase. In: Kolbe, T. H.,

Gröger, G. (eds.): Proceedings of the 1st International Workshop on Next Generation

3D City Models, Bonn, Germany, June 2005, EuroSDR Publications. Weblink

(accessed September 2018): https://mediatum.ub.tum.de/doc/1453849/1453849.pdf

Gröger G., Kolbe, T. H., Czerwinski, A., Nagel C. (2008): OpenGIS® City Geography

Markup Language (CityGML) Encoding Standard, Version 1.0.0. Open Geospatial

Consortium, Doc. No. 08-007r1, August 20th.

http://portal.opengeospatial.org/files/?artifact_id=28802

Gröger G., Kolbe, T. H., Nagel C., Häfele, K. H. (2012): OpenGIS® City Geography Markup

Language (CityGML) Encoding Standard, Version 2.0.0. Open Geospatial

Consortium, Doc. No. 12-019,

http://portal.opengeospatial.org/files/?artifact_id=28802

Herreruela, J., Nagel, C., Kolbe, T. H. (2012): Value-added Services for 3D City Models using

Cloud Computing. In: Löwner, M.-O., Hillen, F., Wohlfahrt, R. (eds.): Geoinformatik

2012 "Mobilität und Umwelt", Proc. of the Conference Geoinformatik 2012, 28.-30. 3.

2012 in Braunschweig. Weblink: http://mediatum.ub.tum.de/doc/1145739/42082.pdf

(accessed September 2018)

Herring, J. (2001): The OpenGIS Abstract Specification, Topic 1: Feature Geometry (ISO

19107 Spatial Schema). OGC Document Number 01-101

Java Application Launcher (2015): Oracle, Weblink (accessed September 2018):

http://docs.oracle.com/javase/6/docs/technotes/tools/windows/java.html

Kaden, R., Kolbe, T. H. (2014): Simulation-Based Total Energy Demand Estimation of

Buildings using Semantic 3D City Models. International Journal of 3-D Information

Modeling, 3(2), 35-53, April-June 2014. Weblink (accessed September 2018):

http://dx.doi.org/10.4018/ij3dim.2014040103

Kolbe, T. H., Gröger, G. (2003): Towards unified 3D city models. In Schiewe, J., Hahn, M.,

Madden, M., Sester, M. (eds.): Proceedings of the ISPRS Comm. IV Joint Workshop

on Challenges in Geospatial Analysis, Integration and Visualization II in Stuttgart.

Weblink: http://mediatum.ub.tum.de/doc/1145769/703861.pdf (accessed Sept. 2018)

https://www.khronos.org/gltf
https://developers.google.com/maps/documentation/elevation/
https://mediatum.ub.tum.de/doc/1453849/1453849.pdf
http://portal.opengeospatial.org/files/?artifact_id=28802
http://portal.opengeospatial.org/files/?artifact_id=28802
http://mediatum.ub.tum.de/doc/1145739/42082.pdf
http://docs.oracle.com/javase/6/docs/technotes/tools/windows/java.html
http://dx.doi.org/10.4018/ij3dim.2014040103
http://mediatum.ub.tum.de/doc/1145769/703861.pdf

3D Geodatabase for CityGML 2019 329

Kolbe, T. H. (2009): Representing and Exchanging 3D City Models with CityGML. In: Lee,

J., Zlatanova, S. (eds.): Proceedings of the 3rd International Workshop on 3D Geo-

Information 2008 in Seoul, South Korea. Lecture Notes in Geoinformation &

Cartography, Springer Verlag, 2009. Weblink (accessed September 2018):

http://mediatum.ub.tum.de/doc/1145752/947446.pdf

Kolbe, T. H.; König, G.; Nagel, C.; Stadler, A. (2009): 3D-Geo-Database for CityGML,

Documentation Version 2.0.1, Institute for Geodesy and Geoinformation Science, TU

Berlin. Weblink (accessed September 2018):

http://www.3dcitydb.org/3dcitydb/fileadmin/downloaddata/3DCityDB-

Documentation-v2_0.pdf

Kunde, F. (2013): CityGML in PostGIS: portability, usage and performance analysis using

the example of the 3D City Database of Berlin. (in german only) Master Thesis,

University of Potsdam, Germany, URN: urn:nbn:de:kobv:517-opus-63656 (accessed

September 2018).

Lodi A., Martello S., Vigo D. (1999): The Touching Perimeter Algorithm: Heuristic and

Metaheuristic Approaches for a Class of Two-Dimensional Bin Packing Problems. In:

INFORMS J on Computing: pp. 345-357.

Lodi A., Martello S., Monaci M., (2002): Two-dimensional packing problems: A survey. In:

European Journal of Operational Research, 141, issue 2, pp. 241-252.

Murray, C. et al. (2010): Oracle ® Spatial Developer’s Guide 11g Release 2 (11.2), E11830-

06, March 2010. Weblink (accessed September 2018):

http://docs.oracle.com/cd/E18283_01/appdev.112/e11830.pdf

Nagel, C., Stadler, A. (2008): Die Oracle-Schnittstelle des Berliner 3D-Stadtmodells. In:

Clemen, C. (Ed.): Entwicklerforum Geoinformationstechnik 2008, Shaker Verlag,

Aachen, S. 197-221.

Plümer, L., Gröger, G., Kolbe, T. H., Schmittwilken, J., Stroh, V., Poth, A., Taddeo, U.

(2005): 3D-Geodatenbank Berlin, Dokumentation V1.0 Institut für Kartographie und

Geoinformation der Universität Bonn (IKG), lat/lon GmbH. Weblink

https://www.businesslocationcenter.de/imperia/md/content/3d/dokumentation_3d_geo

_db_berlin.pdf (accessed September 2018).

Stadler, A., Nagel, C., König, G., Kolbe, T. H. (2009): Making interoperability persistent: A

3D geo database based on CityGML. In: Lee, J., Zlatanova, S. (eds.): Proceedings of

the 3rd International Workshop on 3D Geo-Information 2008 in Seoul, South Korea.

Lecture Notes in Geoinformation & Cartography, Springer Verlag, 2009. Weblink

(accessed September 2018): http://mediatum.ub.tum.de/doc/1145748/781842.pdf

Whiteside, A. (2009): Definition identifier URNs in OGC namespace, Version 1.3. Open

Geospatial Consortium, OGC® Best Practices, Doc. No. 07-092r3, January 15th.

http://portal.opengeospatial.org/files/?artifact_id=30575

http://mediatum.ub.tum.de/doc/1145752/947446.pdf
http://www.3dcitydb.org/3dcitydb/fileadmin/downloaddata/3DCityDB-Documentation-v2_0.pdf
http://www.3dcitydb.org/3dcitydb/fileadmin/downloaddata/3DCityDB-Documentation-v2_0.pdf
http://docs.oracle.com/cd/E18283_01/appdev.112/e11830.pdf
https://www.businesslocationcenter.de/imperia/md/content/3d/dokumentation_3d_geo_db_berlin.pdf
https://www.businesslocationcenter.de/imperia/md/content/3d/dokumentation_3d_geo_db_berlin.pdf
http://mediatum.ub.tum.de/doc/1145748/781842.pdf
http://portal.opengeospatial.org/files/?artifact_id=30575

330 3D Geodatabase for CityGML 2019

Wilson, T. (2008): OGC® KML, OGC® Standard Version 2.2.0. Open Geospatial

Consortium, Doc. No. 07-147r2, April 14th.

http://portal.opengeospatial.org/files/?artifact_id=27810

Weisstein, E. W. (2015): Affine Transformation, Wolfram MathWorld, Weblink (accessed

September 2018): http://mathworld.wolfram.com/AffineTransformation.html

Yao, Z., Sindram, M., Kaden, R., Kolbe, T. H. (2014): Cloud-basierter 3D-Webclient zur

kollaborativen Planung energetischer Maßnahmen am Beispiel von Berlin und

London. In: Kolbe, Bill, Donaubauer (eds.): Geoinformationssysteme 2014 – Beiträge

zur 1. Münchner GI-Runde, 24.-25. 2. 2014, Wichmann Verlag, Berlin. Weblink

(accessed September 2018): http://mediatum.ub.tum.de/doc/1276243/359202.pdf

Yao, Z., Chaturvedi, K., Kolbe, T. H. (2016): Browserbasierte Visualisierung großer 3D-

Stadtmodelle durch Erweiterung des Cesium Web Globe. In: Kolbe, T. H., Bill, R.,

Donaubauer, A. (eds.): Geoinformationssysteme 2016 – Beiträge zur 3. Münchner GI-

Runde, 24.-25. 2. 2016, Wichmann Verlag, Berlin. Weblink (accessed September

2018): http://mediatum.ub.tum.de/doc/1296408/547142.pdf

Yao, Z., Kolbe, T. H. (2017): Dynamically Extending Spatial Databases to support CityGML

Application Domain Extensions using Graph Transformations. In: Kersten, T.P. (ed.):

Beitrag zur 37. Wissenschaftlich-Technische Jahrestagung der DGPF. Deutsche

Gesellschaft für Photogrammetrie, Fernerkundung und Geoinformation e.V. Weblink

(accessed September 2018): http://mediatum.ub.tum.de/doc/1425154/602735.pdf

Yao, Z., Nagel, C., Kunde, F., Hudra, G., Willkomm, P., Donaubauer, A., Adolphi, T., Kolbe,

T. H. (2018): 3DCityDB - a 3D geodatabase solution for the management, analysis,

and visualization of semantic 3D city models based on CityGML. Open Geospatial

Data, Software and Standards 3 (5), 2018, 1-26. Weblink (accessed September 2018):

http://dx.doi.org/10.1186/s40965-018-0046-7

http://portal.opengeospatial.org/files/?artifact_id=27810
http://mathworld.wolfram.com/AffineTransformation.html
http://mediatum.ub.tum.de/doc/1276243/359202.pdf
http://mediatum.ub.tum.de/doc/1296408/547142.pdf
http://mediatum.ub.tum.de/doc/1425154/602735.pdf
http://dx.doi.org/10.1186/s40965-018-0046-7

3D Geodatabase for CityGML 2019 331

Appendix A Changelog

This appendix provides an overview of the most important changes in version 4.0 of the 3D

City Database and version 4.1 of the Importer/Exporter compared to the previous release

version 3.3.0.

A.1 3D City Database relational schema

A.1.1 General changes

 New metadata tables ADE, SCHEMA, SCHEMA_REFERENCING and

SCHEMA_TO_OBJECTCLASS for registering CityGML ADEs

 Added OBJECTCLASS_ID column to all feature tables to distinguish objects from

CityGML ADEs. Also extended OBJECTCLASS table by more feature-specific

details and inserted new entries for feature properties such as geometry, generic

attributes etc.

 Added NOT NULL constraints on each OBJECTCLASS_ID column

 New prefilled metadata table AGGREGATION_INFO that supports the automatic

generation of DELETE and ENVELOPE scripts

 Changed delete rule of one foreign key in link tables to ON DELETE CASCADE to

produce better delete scripts

A.2 3D City Database scripts

 Moved interactive prompts from SQL to batch/shell scripts for better setup automation

 Provide batch (Windows) and shell scripts (UNIX, macOS) for both PostgreSQL and

Oracle DBMS

 Re-added scripts to create a read-only user (UTIL folder), called GRANT_ACCESS

and REVOKE_ACCESS (removed in v3.x). Also includes a read-write option.

 New MIGRATION scripts to upgrade from a 3DCityDB v2.1.0 or v3.3.2 to v4.0.0.

 Tidier folder and script structure:

o Removed folders PL_SQL (Oracle) and PL_pgSQL (PostgreSQL) to make

CITYDB_PKG a top-level directory under the SQLScripts folder

o Moved OBJECTCLASS_INSTANCES script to SCHEMA/OBJECTCLASS

folder

o PostgreSQL: New SCHEMAS directory in UTIL folder

o Oracle: One instead of two CREATE_DB scripts

o Oracle: Moved versioning scripts to its own directory in the UTIL folder

o Oracle: Renamed CREATE_DB folder in UTIL directory to HINTS

 Oracle: Better treatment if SDO_GEORASTER support is missing

 Oracle: Defining spatial metadata on all geometry columns with new function

set_schema_sdo_metadata in CITYDB_CONSTRAINT package instead of a

hard-coded part in SPATIAL_INDEX.sql script

332 3D Geodatabase for CityGML 2019

A.3 3D City Database stored procedures

A.3.1 General changes

 New packages: CITYDB_CONSTRAINT and CITYDB_OBJCLASS

 Removed parts with dynamic SQL where possible. Required renaming of some

function arguments to avoid conflicts with column names in querys

 PostgreSQL: Added volatility categories for better query planning

A.3.2 UTIL package

 Updated version numbers in citydb_version function

 Moved update_schema_constraints and update_table_constraint

procedures into new CITYDB_CONSTRAINT package and renamed them to

set_schema_fkey_delete_rule and set_fkey_delete_rule. Change

data type for on_delete_param to CHAR as only one letter is needed to set a new

delete rule: 'a' for ON DELETE NO ACTION , 'n'for ON DELETE SET NULL

('n'), 'c' for ON DELETE CASCADE or (PostgreSQL-only) 'r' for ON DELETE

RESTRICT

 Moved objectclass_id_to_table_name function to new

CITYDB_OBJCLASS package.

 Added schema_name parameter to functions db_metadata and db_info

 Removed schema_name parameter from get_seq_values function

 Oracle: Removed schema_name parameter from construct_solid function

A.3.3 IDX package

 Oracle: Added schema_name parameter to get_index function

 Oracle: Dropping spatial indexes will not delete spatial metadata anymore

A.3.4 SRS package

 Added schema_name parameter to is_db_ref_sys_3d function

 Oracle: Added schema_name parameter to get_dim function

 Oracle: Do not delete spatial metadata when spatial index is not valid

A.3.5 STAT package

 Exclude new metadata tables from database report

A.3.6 DELETE package

 Aligned API of Oracle version with PostgreSQL (no more _pre and _post

methods)

 Two delete endpoints are provided for each feature class: Delete by single ID value or

delete by a set of IDs

 All 1:n references are deleted right away. Replaced all explicit cleanup scripts

(except for cleanup_appearances) with one generic cleanup function

 New prefix del_ instead of delete_

3D Geodatabase for CityGML 2019 333

 The DELETE scripts have been generated automatically by the ADE Manager Plugin

of the Importer/Exporter. This process shall be repeated when introducing ADE

extensions to the database schema.

A.3.7 DELETE_BY_LINEAGE package

 The package and included stored procedures have been removed

 New function del_delete_cityobjects_by_lineage in DELETE package

A.3.8 ENVELOPE package

 New prefix env_ instead of get_envelope_ (except for

get_envelope_cityobjects function)

 The ENVELOPE scripts have been generated automatically by the ADE Manager

Plugin of the Importer/Exporter. This process shall be repeated when introducing ADE

extensions to the database schema.

A.4 3D City Database Importer/Exporter

The new version 4.1 of the Importer/Exporter contains many bug fixes as well as stability and

performance improvements. A full list of fixes and changes is available from the GitHub

repository at https://github.com/3dcitydb/importer-exporter.

A.4.1 General changes

 Java 8 is required since version 3.3.0.

 The Importer/Exporter can now connect to both Oracle and PostgreSQL.

 Temporary information required during data imports and exports (e.g., for resolving of

XLink references) can now optionally be stored to a local file-based database instead

of using temporary tables in the 3D City Database instance.

 3.1: Importer/Exporter now checks the version of the 3DCityDB before connecting

 3.1: Re-Added user dialog to control GMLID_CODESPACE during import

 3.1: Added user dialog to calculate the ENVELOPE of city objects in the database

 3.3: The location of the main config file (‘project.xml’) has been changed to

%HOMEDRIVE%%HOMEPATH%\3dcitydb\importer-exporter\config (Windows 7

and higher) respectively $HOME/3dcitydb/importer-exporter/config (UNIX/Linux,

Mac OS families). Old config files can still be loaded manually (note: was ../importer-

exporter-3.0/.. in versions 3.0 to 3.2)

 4.1: OSM Nominatim is now used as default geocoder for the map window. Google

Map API services can still be used for the map window and for KML/COLLADA

exports but require an API key.

 4.2: Reworked Plugin API to support non-GUI plugins.

A.4.2 CityGML import

 4.2: Fixed broken feature type filter for CityGML imports.

 4.2: Added possibility to define a gml:id prefix for the UUIDs that are created during

CityGML imports.

https://github.com/3dcitydb/importer-exporter

334 3D Geodatabase for CityGML 2019

 4.1: Added support for importing CityGML data from (G)ZIP files.

 CityGML import now supports CityGML versions 2.0, 1.0 and 0.4.

 A new import log optionally tracks all successfully imported top-level city objects in a

separate CSV file. In case an import process aborts abnormally, this file can be used to

understand which city objects have been processed and stored in the database before

termination.

 The import process now follows a fail-on-first-error strategy, i.e. the import terminates

upon the first error thrown instead of trying to continue.

 Improved import of texture atlases. Each texture atlas is only stored once in the

database (new table ‘tex_image’) even if it is referenced by more than one city object.

 Local appearance information is now resolved in main memory to reduce import times

instead of using temporary database tables.

 Texture metadata is imported even if texture images are chosen to be not imported

 3.1: Changed the way global appearances are imported

 3.1: Fixed bug in BRIDGE importer preventing import of bridges with thematic

surfaces

A.4.3 CityGML export

 4.2: Property projections can now also be defined for abstract feature types.

 4.1: Added support for using SQL and XML queries for CityGML exports to be able

express more flexible and complex filter conditions.

 4.1: Added support for exporting CityGML content to (G)ZIP files.

 Database content can now be exported to CityGML 2.0 or 1.0. When exporting to

CityGML 1.0, feature types only available in CityGML 2.0 such as bridges and

tunnels are omitted.

 City object group members can now be exported as-reference (using XLink

references) instead of as-value to reduce export times. However, note that filter criteria

are not applied in this case, which might result in CityGML files containing non-

resolvable XLink references.

 When exporting city objects with textures, the texture image files can now be

organized into subfolders. This reduces the number of files per folder.

A.4.4 KML/COLLADA/glTF export

 Support for glTF version 2.0 in addition to version 1.0. New COLLADA2glTF

binaries (version 2.1.3) for Windows, Linux and MacOS.

 Solved bugs that might prevent exporting LandUse 3D models from functioning

correctly.

A.5 Web Feature Service

 Since 3.0: Added a basic Web Feature Service interface for the 3D City Database

 Fixed a SQL Injection vulnerability with version 3.3.0. It is strongly recommended

to update to this version.

3D Geodatabase for CityGML 2019 335

A.6 3D Web Map Client

 Introduced geolocation-based features such as the first-person view on mobile devices.

 Support for glTF 2.0.

 Support for Cesium 3D Tiles.

336 3D Geodatabase for CityGML 2019

3D Geodatabase for CityGML 2019 337

Appendix B 3DCityDB @ TU München

The Chair of Geoinformatics23 at Technische Universität München (TUM) took over the

further development of the 3D City Database from TU Berlin (TUB) when Prof. Kolbe moved

from TUB to TUM in 2012. 3DCityDB is being used at TUM in teaching courses on spatial

databases and 3D city modeling, in student projects and master theses, and in many past and

ongoing research projects.

B.1 Interactive Cloud-based 3D Webclient

Besides the Open Source 3DCityDB-Web-Map-Client as described in chapter 8 the Chair of

Geoinformatics has also developed a “Professional Version” of the interactive 3D web client.

This version links 3D visualization models exported in KML/glTF from 3DCityDB with table

data exported using the 3DCityDB Spreadsheet Generator and allows viewing, editing, and

querying objects and their thematic data [Herreruela et al. 2012; Yao et al. 2014; Chaturvedi

et al. 2015]. The configuration of a 3D webclient project (information about each layer,

thematic data, preferences, spatial bookmarks) is also stored in the Cloud as a Google

Spreadsheet. The following image shows a screenshot of a tool created by TUM for the

Energy Atlas Berlin that is based on the “3D Webclient Professional”. It estimates building

energy demands based on the German standard DIN 18599 and the 3D building models in

CityGML and allows to interactively explore retrofitting potentials for single or sets of

buildings [Kaden & Kolbe 2014]. Thematic data are stored in Google Spreadsheets, where

spreadsheet formulas are employed to implement ad-hoc computation of energy values and

their changes according to retrofit measures. Also the costs of the retrofitting measures are

estimated for each building individually.

23 https://www.gis.bgu.tum.de

https://www.gis.bgu.tum.de/

338 3D Geodatabase for CityGML 2019

B.2 Research Projects in which 3DCityDB is being used

Semantic 3D city modeling, city system modeling, and indoor navigation are major research

fields of the Chair of Geoinformatics at TUM. We have been driving the international

development of CityGML and IndoorGML within the OGC. We are partners in and/or

coordinators of projects on Smart Cities, Sustainable Urban Development, and Strategic

Energy Planning funded by the Climate-KIC of the European Institute of Innovation &

Technology (EIT). Projects using 3DCityDB are: Energy Atlas Berlin 24 , Neighborhood

Demonstrators, Smart Sustainable Districts25, Modeling City Systems26, and Smart District

Data Infrastructure27. 3DCityDB has also been used in the OGC Future Cities Pilot28, and ‘3D

Tracks 29 - Collaborative Subway Track Planning in Multi-Scale 3D City and Building

Models’ [Borrmann et al. 2015] funded by the German Science Foundation (DFG) and was

used in projects on deriving 3D DLM from 2D DLM and DTM/DSM [Fiutak et al. 2018].

B.3 Current and future work on 3DCityDB

The team at the Chair of Geoinformatics is currently working on the following tools and

extensions to 3DCityDB. Most of them will be made available as Open Source software

within the 3DCityDB repository as soon as they are finished and tested:

Support of the Dynamizer ADE: Dynamizers extend CityGML to support the representation

and exchange of time-varying attribute values for all CityGML feature properties using

timeseries. Support in 3DCityDB is facilitated by 1) provision of the Java library for

importing and exporting CityGML Dynamizer ADE contents, and 2) provision of a new

web service, the so-called InterSensor Service, which will give access to the timeseries

data stored in the 3DCityDB according to the OGC Sensor Web Enablement standards.

Update Manager: This tool will provide a check-out / check-in functionality for parts of

stored 3D city models for the purpose of editing and updating. It will automatically

detect changes made on the previously exported (checked-out) CityGML dataset and

create WFS as well as direct database transactions that will update the 3DCityDB

contents according to the identified changes (check-in).

Solar potential analysis: This tool computes the solar energy of direct and diffuse irradiation

on building walls and roofs. The computation considers shadow casting by buildings,

vegetation, a Digital Surface Model and the Digital Terrain Model. The monthly energy

and irradiation values as well as the sky view factors are attached as generic attributes to

wall and roof surface objects and in aggregated form to buildings. The software is

implemented in Java and directly connects to the 3DCityDB. It has been employed to

estimate the solar potentials in the official Energy Atlas of the city of Helsinki, Finland.

24 See http://www.gis.bgu.tum.de/en/projects/energieatlas-berlin/ and http://energyatlas.energie.tu-berlin.de/
25 https://www.gis.bgu.tum.de/en/projects/smart-sustainable-districts-ssd/
26 https://www.gis.bgu.tum.de/en/projects/modeling-city-systems-mcs/
27 https://www.gis.bgu.tum.de/en/projects/smart-district-data-infrastructure/
28 https://www.gis.bgu.tum.de/en/projects/future-cities-pilot-phase-1/
29 https://www.gis.bgu.tum.de/en/projects/3dtracks/ and http://www.3dtracks.kit.edu/english/index.php

http://www.climate-kic.org/
http://www.gis.bgu.tum.de/en/projects/energieatlas-berlin/
https://www.gis.bgu.tum.de/en/projects/smart-sustainable-districts-ssd/
https://www.gis.bgu.tum.de/en/projects/modeling-city-systems-mcs/
https://www.gis.bgu.tum.de/en/projects/smart-district-data-infrastructure/
https://www.gis.bgu.tum.de/en/projects/smart-district-data-infrastructure/
https://www.gis.bgu.tum.de/en/projects/future-cities-pilot-phase-1/
https://www.gis.bgu.tum.de/en/projects/3dtracks/
https://www.gis.bgu.tum.de/en/projects/3dtracks/
http://www.gis.bgu.tum.de/en/projects/energieatlas-berlin/
http://energyatlas.energie.tu-berlin.de/
https://www.gis.bgu.tum.de/en/projects/smart-sustainable-districts-ssd/
https://www.gis.bgu.tum.de/en/projects/modeling-city-systems-mcs/
https://www.gis.bgu.tum.de/en/projects/smart-district-data-infrastructure/
https://www.gis.bgu.tum.de/en/projects/future-cities-pilot-phase-1/
https://www.gis.bgu.tum.de/en/projects/3dtracks/
http://www.3dtracks.kit.edu/english/index.php

3D Geodatabase for CityGML 2019 339

Figure 187:

Extending the 3D

City Database

Appendix C 3DCityDB @ virtualcitySYSTEMS

virtualcitySYSTEMS30 has successfully applied the 3D City Database

in customer projects worldwide and also funded its development. With

the Open Source database at the core, virtualcitySYSTEMS also offers

a 3D Spatial Data Infrastructure solution for the management,

distribution, maintenance and visualization of massive 3D geo data

(see next page). As leading developers of the 3D City Database joined

the company, virtualcitySYSTEMS now takes an active role in its

development. Moreover, virtualcitySYSTEMS offers a branded

version of the 3D City database called the virtualcityDATABASE to

answer customer demands and to provide support and maintenance.

C.1 virtualcityDATABASE

The virtualcityDATABASE provides enhanced database functionality as well as plugins for

the Importer/Exporter tool that support workflows for maintaining and updating the 3D city

model content. Main features are:

 Integration of additional LoDs against existing city objects in the database

This plugin allows for integrating city objects from an external data source with

existing city objects stored in the database. The candidate objects are identified with

the database objects based on thematic and spatial checks. Therefore, data

inconsistency can easily be spotted and analyzed before an import. If an integration is

performed, exiting LoDs are replaced and newly introduced LoDs are attached to the

existing objects. Moreover, appearance information can be integrated without

replacing the geometry.

 Deletion of entire city objects or single LoDs representations

The 3D City Database provides a low-level API for deleting city objects. This API

has been extended in the virtualcityDATABASE to also delete single LoDs of city

objects. A graphical user dialog realized as a plugin for the Importer/Exporter allows

users to easily delete city objects based on comprehensive thematic filter criteria.

 Adding material appearances for buildings

This plugin helps to define constant material information for building surfaces based

on thematic properties (e.g., to colorize roofs according to their solar potential).

 Transactional Web Feature Service

Customers of the virtualcityDATABASE already benefit from an OGC-compliant

WFS 2.0 implementation that supports transactions as well as comprehensive spatial

and thematic queries using the OGC Filter Encoding standard.

The virtualcityDATABASE is fully compliant with the 3D City Database. If features

developed for the virtualcityDATABASE have gained enough maturity, virtualcitySYSTEMS

will introduce them to the Open Source 3D City Database project (e.g. the WFS interface).

30 http://www.virtualcitysystems.de/

http://www.virtualcitysystems.de/

340 3D Geodatabase for CityGML 2019

C.2 virtualcitySUITE – The 3D City Platform

The virtualcitySUITE is a modular 3D Spatial Data Infrastructure solution to store, manage,

distribute and visualize 3D geo data. Core components are the virtualcityDATABASE and its

OGC WFS interface for accessing and editing the data, the virtualcityWAREHOUSE, a data

distribution solution running on FME technology that enables users to export 3D city model

content from the virtualcityDATABASE into various industry GIS and CAD formats, and the

web-based authoring tool virtualcityPUBLISHER for creating high-performance 3D web

maps. Based on the Open Source 3D City Database, the virtualcitySUITE allows for building

a 3D SDI platform for virtual 3D city models based on open standards and interfaces.

Figure 188: Components of the virtualcitySUITE.

Our 3D web maps offer enhanced GIS functionality beyond pure 3D visualization including

3D measurements, real-time shadows, WFS-based thematic and spatial queries, POI

integration, data exports through a virtualcityWAREHOUSE interface, and integration of

external WMS and WFS data sources as well as pointcloud data and oblique imagery. The 3D

web maps are based on the Cesium WebGL virtual globe and therefore can be displayed on

modern web browsers and mobile devices such as tablets and smartphones without the need

for additional plugins.

Figure 189: The Berlin 3D City Model consisting of more than 500,000 fully textured buildings is managed

based on our virtualcitySUITE. The Berlin Economic atlas shown above is a 3D web map application that

displays the entire city model and combines the 3D objects with business and POI information, see

http://www.businesslocationcenter.de/wab/maps/main/.

http://www.businesslocationcenter.de/wab/maps/main/

3D Geodatabase for CityGML 2019 341

Appendix D 3DCityDB @ M.O.S.S.

M.O.S.S. Computer Grafik Systeme GmbH31 is a leading provider of geo topographical data

management and processing solutions. Within the M.O.S.S. product suite novaFACTORY,

the 3D City Database is used since 2011 as the primary storage container for 3D and

CityGML based data. M.O.S.S. as an active development partner within the 3D City Database

implementation group drives on the technological progress of the 3D City Database. Within

the M.O.S.S. customer projects millions of CityGML objects are imported managed and

exported by novaFACTORY and the included 3D City Database. One example is the

nationwide database for the german LoD1 building product (LOD-DE) which is based on the

3D City Database. novaFACTORY is also used as a 3D platform within different projects

concerning renewable energy topics like building heat demand analysis or solar potential

assessment.

Figure 190: Example of a 3D building heat demand map for the city of Ludwigsburg created with

novaFACTORY 3D within project SimStadt32

D.1 novaFACTORY at a glance

novaFACTORY is an advanced Spatial Data Management solution for efficient geodata

cataloguing, exploitation and dissemination. With novaFACTORY we are leading the way in

the full integration of enterprise-wide geospatial data sources which the whole organization

can have access to and work from, covering all aspects of

• Data Import

• Quality Assurance

• Data Storage and Management

• Data Processing and Enrichment

• Data Dissemination

As applications for geodata have grown, so too has the need to efficiently administer them.

Many businesses, whether government departments or private companies, are faced with the

complex task of managing geospatial data. The challenge is to allow collaboration across the

31 http://www.moss.de/
32 http://simstadt.hft-stuttgart.de/

http://www.moss.de/
http://simstadt.hft-stuttgart.de/

342 3D Geodatabase for CityGML 2019

organization in a meaningful way, from a range of sources and formats located throughout

their enterprise.

novaFACTORY is the solution to this challenge. It brings geodata together and eliminates

barriers to spatial data usability by automatically uniting disparate data and combining them

into one spatial database. novaFACTORY is designed for seamlessly integrating large

geographical data sets from many different sources, e.g. topographic maps, digital surface

models, aerial photographs or 3D building models.

Within novaFACTORY the module 3D GDI is where the 3D City Database comes into the

action.

Figure 191: novaFACTORY 3D overview and workflow. 3D data management based on 3D City Database

D.2 novaFACTORY 3D GDI

The novaFACTORY 3D GDI module is designed for handling and serving 3D city models in

CityGML format. It enables the RDBMS based seamless storage and dissemination of 3D city

models as well as setting up web services using them. The data is kept within the 3D City

Database and can be automatically transferred into an ArcGIS® Geodatabase.

As with all novaFACTORY modules data can be disseminated via an intuitive web interface

and via any workstation, in alternatively formats, e.g. CityGML, KML/COLLADA, VRML,

3D Shape, 3D PDF and 3D DXF. Depending on which kind of format is chosen different

export parameters can be opted for showing specific object data.

Additional benefit is gained by automatically enhancing the 3D building data. The

novaFACTORY 3D GDI module offers a fully integrated solar potential analysis during the

export, targeted at the area of interest. 3D data can be visualized directly. Appropriate ArcGIS

presentation rules will be generated automatically during the export.

The novaFACTORY 3D GDI module works best in cooperation with the novaFACTORY 3D

Pro module for automatic recognition of building roofs from photogrammetric raw data. This

raw data will be supplied automatically and the 3D City Database will be updated

automatically when production data are approved.

