
3D City Database for CityGML

3D City Database Version 2.0.6-postgis

Importer/Exporter Version 1.4.0-postgis

Release Version

Tutorial

27 August 2012

Geoinformation Research Group
Department of Geography
University of Potsdam

Felix Kunde
Hartmut Asche

Institute for Geodesy and
Geoinformation Science

Technische Universität Berlin

 Thomas H. Kolbe
Claus Nagel

Javier Herreruela
Gerhard König

(Page intentionally left blank)

Content

Disclaimer...4

1. Overview...5

2. Major changes to the Oracle version...8

3. Requirements..12

4. How to setup a 3DCityDB in PostGIS...13

5. FAQ..20

6. References..22

Appendix...23

Tutorial for 3D City Database v2.0.6-postgis and Importer/Exporter v1.4.0-postgis

Disclaimer:
The 3D City Database version 2.0.6-postgis and the Importer/Exporter version 1.4.0-postgis
developed by the Institute for Geodesy and Geoinformation Science (IGG) at the Technische
Universität Berlin is free software under the GNU Lesser General Public License Version 3.0.
See the file LICENSE shipped together with the software for more details. For a copy of the
GNU Lesser General Public License see the files COPYING and COPYING.LESSER [www1].

THE SOFTWARE IS PROVIDED BY IGG "AS IS" AND "WITH ALL FAULTS." IGG MAKES NO
REPRESENTATIONS OR WARRANTIES OF ANY KIND CONCERNING THE QUALITY, SAFETY OR
SUITABILITY OF THE SOFTWARE, EITHER EXPRESSED OR IMPLIED, INCLUDING WITHOUT
LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT.

IGG MAKES NO REPRESENTATIONS OR WARRANTIES AS TO THE TRUTH, ACCURACY OR
COMPLETENESS OF ANY STATEMENTS, INFORMATION OR MATERIALS CONCERNING THE
SOFTWARE THAT IS CONTAINED ON AND WITHIN ANY OF THE WEBSITES OWNED AND
OPERATED BY IGG.

IN NO EVENT WILL IGG BE LIABLE FOR ANY INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES HOWEVER THEY MAY ARISE AND EVEN IF IGG HAVE BEEN
PREVIOUSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

4

Tutorial for 3D City Database v2.0.6-postgis and Importer/Exporter v1.4.0-postgis

1. Overview

Welcome to the release of the 3D City Database Version 2.0.6-postgis and the
Importer/Exporter Version 1.4.0-postgis for PostGIS. With the ability to now store and analyze
CityGML-documents in PostGIS, we are proud to present our free software in a fully
OpenSource-context.

Thanks to the continuous development of PostGIS 2.0 with new features for topology, raster
and 3D support, a long considered port became feasible. Except for version- and history
management all key features of the 3D City Database incl. the Importer/Exporter have been
translated to PostgreSQL / PostGIS. For a quick overview see table 1.

Please note that this document only gives a short introduction on the PostGIS-specific details.
For a full overview of the 3DCityDB and the Importer/Exporter, please refer to the version
2.0.1 documentation [1] and the addendum [2] for the recent release of the database and the
Importer/Exporter tool (2.0.6 and 1.4.0).

Tab. 1: Port-overview on supported key-features of both versions

Key Features of the 3D City Database Oracle PgSQL

Semantically rich, hierarchically structured model ü ü

Five different Levels of Detail (LODs) ü ü

Appearance data in addition to flexible 3D geometries ü ü

Representation of generic and prototypical 3D objects ü ü

Free, also recursive aggregation of geo objects ü ü

Complex digital terrain models (DTMs) ü ü

Management of large aerial photographs ü ü

Version and history management ü X

Matching/merging of building features ü ü

Key Features of the Importer/Exporter

Full support for CityGML 1.0 and 0.4.0 ü ü

Exports of KML/COLLADA models ü ü

Generic KML information balloons ü ü

Reading/writing CityGML instance documents of arbitrary file size ü ü

Multithreaded programming facilitating high-performance CityGML processing ü ü

Resolving of forward and backwards XLinks ü ü

XML validation of CityGML documents ü ü

User-defined Coordinate Reference Systems ü ü

Coordinate transformations for CityGML exports ü ü

Matching/merging of building features ü ü

ü= equivalent support, ü= Oracle-specific support ü= PostGIS-specific support X = not supported

5

Tutorial for 3D City Database v2.0.6-postgis and Importer/Exporter v1.4.0-postgis

3D City Database (abbreviated as 3DCityDB in the following) [3]

• Complex thematic modelling:
Description of thematic features by attributes, relations, nested aggregation hierarchies
(part-whole-relations) between features in a semantic and a geometric manner which is
useful for thematic queries, analyses, or simulations

• Five different Levels of Detail (LODs)
Multi-representation of geo objects (including DTMs and aerial photographs) in five
different LODs based on geometric precision and thematic refinement

• Appearance data
Appearance of features can be used to represent textures and materials, but also non-
visual properties like infra-red radiation, noise pollution, etc.

• Complex digital terrain models (DTMs)
DTMs can be represented in four different ways: by regular grids, triangulated irregular
networks (TINs), 3D mass points and 3D break lines. For each LOD a complex relief can
be aggregated from any number of DTM components of different types. For example,
3D mass points and break lines can be used together to form complex terrain models.

• Representation of generic and prototypical 3D objects
For efficient memory management, frequently occurring objects at different locations of
the city-model can be stored once for each LOD as a prototype and be referred to as an
implicit geometry, e.g. pieces of street, furniture like lanterns, road signs, benches etc.

• Free, also recursive aggregation of geo objects
Geo objects can be aggregated to a group according to user-defined criteria. Each
group represents a geo object itself. Names and additional classifying attributes can be
assigned to groups. Groups may contain other groups as members, resulting in
aggregation hierarchies of arbitrary depth.

• Flexible 3D geometries
Geometries of 3D objects can be represented through the combination of surfaces and
solids as well as any, also recursive, aggregation of these elements.

• Management of large aerial photographs
The database can handle aerial photographs of arbitrary size using the new
raster2pgsql raster-loader of PostGIS

6

Tutorial for 3D City Database v2.0.6-postgis and Importer/Exporter v1.4.0-postgis

Importer/Exporter

• Import and export of even very large CityGML instance documents (> 4 GB)

• Export of buildings into the KML/COLLAD format

• Coordinate transformation and tiling for exports

• Multiple filter-operations for im- and exports incl. a graphical select of a bounding box
by a map widget

• Management of user-defined Coordinate Reference Systems (SRIDs)

• Matching and merging of redundant building objects in the database

• New functionalities can be incrementally added via Plugins

Further information, software downloads, ready-to-use demos, links to the source code
repository, and much more can be found at:
http://opportunity.bv.tu-berlin.de/software/projects/3dcitydb-imp-exp/ [www2]
and soon at the official website of the 3D City Database [www3].

The PostGIS port was realized within a Master's thesis by Felix Kunde conducted at the
University of Potsdam, and was supported by the 3DCityDB developer team of the IGG at the
Technical University of Berlin as well as the company virtualcitySYSTEMS GmbH (Berlin,
Germany). A previous translation of SQL scripts was done by Laure Fraysse in cooperation with
IGO (Paris, France) which was the starting point for the further development.

7

Tutorial for 3D City Database v2.0.6-postgis and Importer/Exporter v1.4.0-postgis

2. Major Changes to the Oracle version

Data modelling and relational schema

The data model behind the relational database schema of the 3DCityDB was kept unchanged.
Supporting UML diagrams and their relational mapping can be found in the main 3DCityDB
documentation [1]. Only two Oracle-specific attribute types had to be changed. First, for
polygonal geometries the spatial data type SDO_GEOMETRY was replaced by ST_GEOMETRY
(see [1]: 18), and second, the ORDImage data type for storing texture images was substituted
by a simple BLOB (see [1]: 20).

When referring to the relational schema several differences in data types will always occur
when using a different Database Management Systems (DBMS). Their internal structure is
mostly following the same purpose, so only the name has to be switched. The following table
lists the differences between Oracle Spatial and PostgreSQL / PostGIS:

 Tab. 2: Differences in data types

Oracle Spatial PostgeSQL/PostGIS further explanation

varchar2 varchar

number numeric integer used for referential
id_columns because of serial

binary_double double precision

blob, clob bytea, text

serial (integer) implicitly creates a sequence named
tablename_columnname_seq

ORDImage bytea PostGIS raster might be an option

sdo_geometry (st_)geometry st_geometry also exists in Oracle

sdo_raster raster formerly known as WKT Raster

sdo_georaster raster

Creating geometric columns and spatial indexes

PostGIS 2.0 introduces the PostgreSQL type modifier definition of geometry-columns inside of
CREATE TABLE statements [www4]. It was used in the SQL scripts instead of the older but still
common function AddGeometryColumn. Unlike the explicit definition for
USER_SDO_GEOM_METADATA in Oracle Spatial, both methods implicitly insert a tuple of
metadata in the geometry_columns-view.

8

Tutorial for 3D City Database v2.0.6-postgis and Importer/Exporter v1.4.0-postgis

The columns that store 3D-geometries are indexed using an n-dimensional GiST index. It is a
common practice to force PostgreSQL to get rid of dead rows and update table statistics for the
spatial columns after bulk inserts or updates and not wait until the “autovaccum-deamon” of
PostgreSQL will do that [www5] [4]. This is done by the VACUUM ANALYSE command:

The SQL Planner will use these statistics to evaluate if a GiST index should be used for spatial
queries. A SQL script provided to save the user from having to manually write SQL commands
for all affected columns. It is shipped within the folder 3dcitydb/postgis/UTIL.

Raster-data management

The raster-data management is much simpler than in Oracle Spatial. In Oracle a
SDO_GeoRaster object must relate to a raster-data-table (RDT) with SDO_Raster objects
which hold the actual raster-files. The Oracle version of the 3DCityDB also contains tables for
initial imports of image-tiles which can be merged to one raster-file in a second step (IMP-
tables). They are necessary for a raster-import tool that was developed for a former version of
the 3DCityDB [5]. PostGIS 2.0 offers a simple but powerful tool for importing raster-files into

9

 VACUUM ANALYZE [table_name] [(column_name)]; VACUUM ANALYZE [table_name] [(column_name)];

CREATE TABLE surface_geometry(
 id NUMBER NOT NULL,
 geometry SDO_GEOMETRY,
 . . .
)

INSERT INTO USER_SDO_GEOM_METADATA (TABLE_NAME, COLUMN_NAME, DIMINFO, SRID)
 VALUES ('SURFACE_GEOMETRY', 'GEOMETRY',
 MDSYS.SDO_DIM_ARRAY
 (MDSYS.SDO_DIM_ELEMENT('X', 0.000, 10000000.000, 0.0005),
 MDSYS.SDO_DIM_ELEMENT('Y', 0.000, 10000000.000, 0.0005),
 MDSYS.SDO_DIM_ELEMENT('Z', -1000, 10000, 0.0005)) , 3068);

CREATE TABLE surface_geometry(
 id SERIAL NOT NULL,
 geometry GEOMETRY(PolygonZ,3068),
 . . .
)

or

CREATE TABLE surface_geometry(
 id SERIAL NOT NULL,
 . . .
)

SELECT AddGeometryColumn('surface_geometry', 'geometry', 3068, 'POLYGON', 3);

Tutorial for 3D City Database v2.0.6-postgis and Importer/Exporter v1.4.0-postgis

the database called raster2pgsql. It is executed from the command line and creates a proper
SQL insert command for the selected raster-file. Operators can and should be used for setting
the reference system, tiling and different levels for raster-overviews (pyramid-layers) (see
example below). In the PostGIS approach every stored tile is a raster-object itself, even the
raster-overviews. They can be grouped by their original file-name stored in a separate column.
This concept would make the RDT and IMP-tables obsolete. Therefore the RDT- and IMP-tables
were dropped for the PostGIS version of the 3DCityDB. We recommend to use the raster2pgsql
tool.

An import into the raster_relief-table could look like this:

-f sets the name of the target column (in this case rasterproperty), the target table is
specified at last (raster_reflief)

-s sets the srid for the raster
-F adds a column for the original file name (file.format)
-t tiling-operator
-l levels for raster-overviews

It is possible to import multiple raster-files from a given folder like in the example
(relief/*.tif). For further readings please refer to the PostGIS documentation on raster
data management [www6].

History Management

Based on the Oracle Workspace Manager it is possible to manage concurrent versions or
planning scenarios of the 3DCityDB within one user schema. They are organized as views of
the original dataset or of their parent version. The Oracle version of the 3DCityDB delivers
scripts to enable or disable versioning support for the database tables as well as a bundle of
scripts and tools for managing planning-alternatives called the Planning Manager.
Unfortunately, as PostgreSQL does not offer any equivalent facility, the Planning Manager and
related scripts could not be ported. Corresponding elements in the graphical user interface
(GUI) of the Importer/Exporter were removed.

A few free projects exist which implement script-based solutions [www7, www8], but for
features like the Planning Manager they would need a lot of code-rework to get the same
results like with Oracle's Workspace Manager. It will be considered for future releases of the
PostGIS version.

10

 raster2pgsql -f rasterproperty -s 3068 -I -C -F -t 128x128 -l 2,4 relief/*.tif
 raster_relief > rastrelief.sql
 raster2pgsql -f rasterproperty -s 3068 -I -C -F -t 128x128 -l 2,4 relief/*.tif
 raster_relief > rastrelief.sql

Tutorial for 3D City Database v2.0.6-postgis and Importer/Exporter v1.4.0-postgis

Oracle packages vs. PostgreSQL schemas

The 3DCityDB provides PL/pgSQL stored procedures which are used by the Importer/Exporter-
tool. Fortunately PostgreSQL’s procedural language of SQL PL/pgSQL comes close to Oracle's
PL/SQL grammar which facilitated the porting of scripts. Note that previous self-developed
scripts for the Oracle version will not with 3DCityDB v2.0.6-postgis. They have to be translated
to PL/pgSQL first in order to work correctly.

For the Oracle version the procedures and functions were grouped into packages. However,
regarding PostgreSQL the package concept only exists in the commercial Plus Advance Server
by EnterpriseDB. An alternative grouping mechanism for stored procedures that is suggested
by the PostgreSQL documentation [www9] and which has been implemented, is the usage of
schemas. A schema is a separate namespace with own tables, views, sequences, functions etc.
The packages from the Oracle release are represented in one PostgreSQL schema called
geodb_pkg and not in several schemas for each package (see also figure 2 on page 16). But
for a better overview the functions were given name prefixes:

 Tab. 3: Function grouping in Oracle and PostgreSQL

former package name Prefix Count Source (PL_pgSQL/GEODB_PKG/)

geodb_delete_by_lineage del_by_lin_ 1 DELETE/DELETE_BY_LINEAGE.sql

geodb_delete del_ 48 DELETE/DELETE.sql

geodb_idx idx_ 16 INDEX/IDX.sql

geodb_match match_ 12 MATCHING/MATCH.sql

geodb_merge merge_ 9 MATCHING/MERGE.sql

geodb_stat stat_ 1 STATISTICS/STAT.sql

geodb_util util_ 9 UTIL/UTIL.sql

11

Tutorial for 3D City Database v2.0.6-postgis and Importer/Exporter v1.4.0-postgis

3. Requirements

This chapter provides an overview of the minimum requirements for the 3DCityDB and the
Importer/Exporter tool. Please carefully review these requirements.

3D City Database

As illustrated in chapter 2 some of the features of PostGIS 2.0 are used. Thus the SQL scripts
would only work with version 2.0 or higher. PostGIS 2.0 requires PostgreSQL 8.4 or higher. For
64-bit Windows OS only 9.0 or higher can be used. An empty 3DCityDB requires 14 MB of disk-
space (11 MB PostGIS + 3 MB 3DCityDB).

Importer/Exporter

The Importer/Exporter tool can run on any platform providing support for Java 6. It has been
successfully tested on (but is not limited to) the following operating systems: Microsoft
Windows XP, Vista, 7; Apple Mac OS X 10.6; Ubuntu Linux 9, 10, 11.

Prior to the setup of the Importer/Exporter tool, the Java 6 Runtime Environment (JRE version
1.6.0_05 or higher) or Java 7 Runtime Environment (JRE version 1.7.0_03 or higher) must be
installed on your system. The necessary installation package can be obtained from [www10].

The Importer/Exporter tool is shipped with a universal installer that will guide you through the
steps of the setup process. A full installation of the Importer/Exporter including documentation
and example CityGML files requires approx. 110 MB of hard disk space. Installing only the
mandatory application files will use approx. 16 MB of hard disk space. Installation packages
can be chosen during the setup process.

The Importer/Exporter requires at least 256 MB of main memory. For the import and export of
large CityGML respectively KML/COLLADA files, a minimum of 1 GB of main memory is
recommended.

12

Tutorial for 3D City Database v2.0.6-postgis and Importer/Exporter v1.4.0-postgis

4. How to set up a 3DCityDB in PostGIS

1. Installed RDBMS and configuration

Make sure that the PostgreSQL server installation is of version 8.4 or higher. For the right
settings of the configuration files check the according PostgreSQL online documentation
[www11]. The PostGIS extension must be of version 2.0.0 or higher. It has to be considered
that both projects are under continuous development, but it is recommended that only
officially released installers should be used.

2. Run the 3DCityDB-Importer-Exporter-1.4-postgis-Setup

The installer setup of the software is mostly self-explaining. The SQL and PL/pgSQL scripts of
the 3DCityDB are grouped in the 3dcitydb folder at the target installation-path. The folder
structure is explained shortly with the next table:

 Tab. 4: Folder hierarchy of the 3DCityDB installation package

 3dcitydb/postgis Explanation

CREATE_DB.bat batchfile that calls CREATE_DB.sql (Microsoft Windows family)

DROP_DB.bat batchfile that calls DROP_DB.sql (Microsoft Windows family)

CREATE_DB.sh shell script that calls CREATE_DB.sql (UNIX/Linux and derivates, MacOS X)

DROP_DB.sh shell script that calls DROP_DB.sql (UNIX/Linux and derivates, MacOS X)

CREATE_DB.sql calls SQL scripts for setting up the relational schema of the 3DCityDB

CREATE_GEODB_PKG.sql creates a separate schema in the database named geodb_pkg with stored
procedures, called by CREATE_DB.sql

DROP_DB.sql drops all the schema-elements cascadingly, called by DROB_DB.bat / .sh

SCHEMA called by CREATE_DB.sql

CONSTRAINTS contains a file that sets the referential foreign keys between tables

INDEXES contains files for setting sequential (B-Tree) and spatial indexes (GiST)

TABLES contains files for creating the database tables

PL_pgSQL/GEODB_PKG called by CREATE_GEODB_PKG.sql

DELETE contains scripts that help to delete single features from the database. Used
by the Matching-Merging-Plugin for the Importer/Exporter.

INDEX contains scripts with index-functions. Only used by the Importer/Exporter.

MATCHING contains scripts for the Matching-Merging-Plugin.

STATISTICS contains a script that generates a database-report for Importer/Exporter

UTIL contains several helper-functions, mostly for Importer/Exporter

UTIL called by CREATE_DB.sql

CREATE_DB contains additional scripts for CREATE_DB.sql

RO_USER contains a script that creates a read-only user for the database

VACUUM contains a script that collects table statistics (vacuum) for spatial columns

13

Tutorial for 3D City Database v2.0.6-postgis and Importer/Exporter v1.4.0-postgis

3. CREATE an empty PostGIS-database

Select a user with privileges to create an empty database with PostGIS Extension and also
access the PostGIS features. No violation of rights should occur when working as a superuser.
In the end it should look like in figure 1. The 3DCityDB will be stored in the public schema,
which also contains the PostGIS elements like functions, view for spatial metadata and a table
for reference systems.

 Fig. 1: Empty PostGIS 2.0 database in the pgAdminIII-tool

4. Set up a 3DCityDB

Afterwards, a blank PostGIS database is ready to be set up with the relational schema of the
3DCityDB. The CREATE_DB SQL script in the main folder 3dcitydb/postgis has to be executed
from the psql console of PostgreSQL. It can not be done in the pgAdminIII tool. A more
comfortable way is offered with shell scripts CREATE_DB.bat for Microsoft Windows family or
CREATE_DB.sh for UNIX/Linux and derivates as well as MacOS X. They have to be edited first
in order to call the corresponding SQL file (see text box below). The same applies to the shell
scripts DROP_DB.bat and DROP_DB.sh.

14

 Provide your database details here
 PGPORT=5432 (this is the default PostgreSQL port)
 PGHOST=your_host_address (localhost or server-address)
 PGUSER=your_username (username e.g. postgres)
 CITYDB=your_database (name of the 3D-CityDB e.g. citydb)
 PGBIN=path_to_psql.exe (e.g. 'C:\PostgreSQL\bin' or 'C:\pgAdmin III' on Windows

 or '/usr/bin' on UNIX/Linux/MacOS X)

 Provide your database details here
 PGPORT=5432 (this is the default PostgreSQL port)
 PGHOST=your_host_address (localhost or server-address)
 PGUSER=your_username (username e.g. postgres)
 CITYDB=your_database (name of the 3D-CityDB e.g. citydb)
 PGBIN=path_to_psql.exe (e.g. 'C:\PostgreSQL\bin' or 'C:\pgAdmin III' on Windows

 or '/usr/bin' on UNIX/Linux/MacOS X)

Tutorial for 3D City Database v2.0.6-postgis and Importer/Exporter v1.4.0-postgis

The Windows batchfiles are then executed by double clicking. The .sh scripts can be run from
within a shell environment. Please open your favourite shell and change to the
"3dcitydb/postgis" subfolder within the installation directory of the Importer/Exporter. Enter
the following command to make the CREATE_DB.sh script executable for the owner of the file:

Afterwards, simply run the CREATE_DB.sh script by typing:

When executed the user might be asked for his PostgreSQL login password first. The setup
requires two mandatory user inputs:

1. Spatial Reference Identifier for newly created geometry objects (SRID),
2. corresponding GML conformant URN encoding for gml:srsName attributes

Make sure to only provide the numeric identifier of the spatial reference system as SRID (e.g.,
the EPSG code). When prompted for input, the values provided in parentheses are only
examples but no default values! The SRID will be checked for its existence in the
spatial_ref_sys table of PostGIS and if it's appropriate for spatial functions. If the SRID is
accepted the user is given the feedback “SRID ok”. Otherwise an error will occur which forces
the setup to stop.

A successful test session for Berlin will look like this:

15

path_to_your_importer_exporter_installation\resources\3dcitydb\postgis>
"C:\PostgreSQL\bin\psql" -d "citydb" -f "CREATE_DB.sql"
Password:
SET
Please enter a valid SRID (e.g., 3068 for DHDN/Soldner Berlin): 3068
Please enter the corresponding SRSName to be used in GML exports (e.g.
urn:ogc:def:crs,crs:EPSG::3068,crs:EPSG::5783):
urn:ogc:def:crs,crs:EPSG:6.12:3068,crs:EPSG:6.12:5783

CREATE FUNCTION
 check_srid

 SRID ok
(1 row)

CREATE TABLE
ALTER TABLE
INSERT 0 1
CREATE TABLE
ALTER TABLE
...

 chmod u+x CREATE_DB.sh chmod u+x CREATE_DB.sh

 ./ CREATE_DB.sh ./ CREATE_DB.sh

Tutorial for 3D City Database v2.0.6-postgis and Importer/Exporter v1.4.0-postgis

Error cases – Unknown identifiers of local reference system for the city of Potsdam:

16

...
ALTER TABLE
ALTER TABLE
...
CREATE INDEX
CREATE INDEX
...
INSERT 0 1
INSERT 0 1
...
CREATE SCHEMA
CREATE FUNCTION
CREATE FUNCTION
...
CREATE TYPE
CREATE FUNCTION
CREATE FUNCTION
CREATE FUNCTION
DROP TABLE
CREATE TABLE
INSERT 0 1
...
CREATE FUNCTION

3DCityDB creation complete!

path_to_your_importer_exporter_installation\resources\3dcitydb\postgis>
pause
Press any key to continue . . .

path_to_your_importer_exporter_installation\resources\3dcitydb\postgis>
"C:\PostgreSQL\bin\psql" -d "citydb" -f "CREATE_DB.sql"
Password:
SET
Please enter a valid SRID (e.g., 3068 for DHDN/Soldner Berlin): 96734
Please enter the corresponding SRSName to be used in GML exports (e.g.
urn:ogc:def:crs,crs:EPSG::3068,crs:EPSG::5783):
urn:ogc:def:crs:EPSG::325833

CREATE FUNCTION
psql:CREATE_DB.sql:47: ERROR: Table spatial_ref_sys does not contain
the SRID 96734. Insert commands for missing SRIDs can be found at
spatialreference.org

path_to_your_importer_exporter_installation\resources\3dcitydb\postgis>
pause
Press any key to continue . . .

Tutorial for 3D City Database v2.0.6-postgis and Importer/Exporter v1.4.0-postgis

After running the CREATE_DB SQL script the 3DCityDB should look like in figure 2. By the
counters you can check if the setup was correct.

 Fig. 2: 3DCityDB in the pgAdminIII-tool

If a wrong reference system was chosen when creating the 3DCityDB it can still be changed
with the function util_change_db_srid(srid NUMERIC, gml_ident VARCHAR) found in
the GEODB_PKG schema. Of course, the database should still be empty when the SRID is
changed to avoid any false projections or errors on the data. It is also possible to reuse an
empty 3DCityDB as a template for any CityGML model to skip the previous steps when creating
another database. In case that the SRID is different, just apply the util_change_db_srid
function to the new database. The function is executed like this:

17

 SELECT geodb_pkg.util_change_db_srid(4326,'urn:ogc:def:crs:EPSG:4326'); SELECT geodb_pkg.util_change_db_srid(4326,'urn:ogc:def:crs:EPSG:4326');

Tutorial for 3D City Database v2.0.6-postgis and Importer/Exporter v1.4.0-postgis

5. Start the Importer/Exporter

Now that the 3DCityDB is ready to use, start the Importer/Exporter batchfile. After a few
seconds the GUI should pop up. Switch to the database-panel and enter your connection
details. If you have worked with the Importer/Exporter before you will notice that the
functionalities are similar to in the Oracle version. One difference on the connection details
appears at the textfield for the database-name. For connecting to Oracle the instance SID had
to be entered. For PostgreSQL / PostGIS use the name of the database you have created in
step 3. If the connection could be established the console-window should look like this:

Fig. 3: Importer/Exporter successfully connected to the database (console-window detached)

18

Tutorial for 3D City Database v2.0.6-postgis and Importer/Exporter v1.4.0-postgis

Again: For further instructions on how to work with the Importer/Exporter please read the
official 3DCityDB documentation [1] and the recent addendum [2].

6. DROP the 3DCityDB

To drop an existing database instance of the 3DCityDB call the SQL script DROP_DB.sql which
can be found in the top-level SQL folder of the distribution package. Similar to the setup
procedure, the convenience scripts DROP_DB.bat and DROP_DB.sh can be used instead. Please
follow the above steps to enter your database details in these scripts and to run them on your
machine. Note that DROP_DB.sql only removes the relational schema of the 3DCityDB as well
as all PL/pgSQL functions and utilities. The database itself is not dropped.

19

Tutorial for 3D City Database v2.0.6-postgis and Importer/Exporter v1.4.0-postgis

5. FAQ

I can not get a connection from the Importer/Exporter to the database. Any help?

Check if you have misspelled some parameter of the connection details. If you are working in a
network, check if the PostgreSQL configuration file hba.conf contains the address of your
client.

Which version of CityGML is supported?

The relational database schema is derived from CityGML version 1.0.0 [6] and is also
backwards-compatible with the OGC Best Practices version 0.4.0. The recent release of
CityGML 2.0.0 [7] and any Application Domain Extension (ADE) are not yet supported.

How good or bad is the performance of the PostGIS version compared to the Oracle
version?

Fair enough. Several im- and exports of CityGML documents of various sizes and contents were
tested with both versions. Different city-models were exported to KML/COLLADA, too. In most
cases the execution times for the PostGIS version reached the same level like the Oracle
version even with default settings for PostgreSQL. It could be noted that untextured CityGML
exports were much quicker in Oracle. For very large datasets (> 10 GB) PostgreSQL/PostGIS
scales better for CityGML im- and exports. A detailed analysis comparing the performance of
both version is part of the Master's thesis by Felix Kunde [8]. A pdf (german and english) will
be available in fall 2012 when the thesis is finished.

Is there a detailed documentation how the port to PostGIS was realized?

A detailed documentation for porting PL/SQL scripts and Oracle-specific parts of the Java-code
is also shipped with this release. These documents may also provide an introduction for porting
own developed features or functions. The Master's thesis will also discuss all aspects on the
PostGIS port in detail.

Which external tools can I use for visualizing my database?

With the KML-Exporter the Importer/Exporter took advantage of the widespread Google Earth
client. You are able to export and watch footprints, extruded footprints, geometries and
COLLADA files of your buildings on the virtual globe. You can also switch on a mouse-over
highlighting and information balloons for the buildings in the preferences for the KML-Exporter.

For CityGML you can use several free viewers e.g. FZKViewer or LandXplorer. If you want to
visualize your data directly from the database you can use the FME-inspector in connection
with FME PostGIS-reader. The next version of the OpenSource-GIS gvSIG (1.12) will be able to
load 3D models from a PostGIS database.

20

Tutorial for 3D City Database v2.0.6-postgis and Importer/Exporter v1.4.0-postgis

It happens, that external programs with PostGIS drivers try to read the geometries with the
deprecated PostGIS function asewkb, which is now called ST_AsEwkb. A bundle of lately
deprecated functions can be loaded back into your database by executing the legacy.sql file
found in the folder PostgreSQL/share/contrib/postgis-2.0. It can be expected that this
mismatch will not appear in recent software-releases

After the KML-Export buildings are flying above the ground. What is going wrong?

Use the default settings in the preferences for the KML-Exporter for altitude and terrain. The
KML-Exporter fetches the heights of Google's elevation-model to calculate the right offset to
the buildings in the database. This is also written to the console-window. It is only done once
for each building, as the offset is inserted as an generic attribute for the city objects. If you are
using CityGML instance documents which were formerly stored in an Oracle 10g DBMS and
used for KML exports, these entries are holding heights that will not fit Oracle 11g or PostGIS
databases. The coordinate transformation to WGS 84 leads to different height-results between
Oracle 10g and 11g. PostGIS' ST_Transform calculates the same values than Oracle 11g. To
sum it up: Delete the affected rows in the table Cityobject_GenericAttrib (with
attrname 'GE_LoD[1,2,3 or 4]_zOffset') and restart the KML export. If facing the message
OVER_QUERY_LIMIT the Limit (2500) for requesting heights from Google's elevation service
was exceeded and no values will be written in the database. The user has to wait 24 hours to
be able to send new requests to the web service with the same client.

I think I've found a bug ...

If so, please report this bug to us. If you have any further issues on the software performance,
results of im- and exports or just questions please tell us. We're glad to receive any feedback.
Please note that even though the software was tested thoroughly with various datasets of
different size and content (especially when fixing the reported bugs of the beta-release) we
cannot guarantee that no more errors occur during imports and exports. It is strongly
recommended running the PostGIS port in a dedicated testing environment first before
managing all your CityGML data with our software.

21

Tutorial for 3D City Database v2.0.6-postgis and Importer/Exporter v1.4.0-postgis

6. References

Documents:

[1] KOLBE, T.H. ; KÖNIG, G. ; NAGEL, C. ; STADLER, A. (2009): 3D-Geo-Database for CityGML. Version
2.0.1. Documentation. Berlin.
Accessible under: http://www.3dcitydb.net/index.php?id=1897

[2] KOLBE, T.H. ; NAGEL, C. ; HERRERUELA, J. (2012): 3D-Geo-Database for CityGML. Addendum to the
3D City Database Documentation Version 2.0. Berlin.
Accessible under: http://www.3dcitydb.net/index.php?id=1897

[3] STADLER, A. ; NAGEL, C. ; KÖNIG, G. ; KOLBE, T.H. (2009): Making interoperability persistent: A 3D
geo database based on CityGML. In: LEE, J. ; ZLATANOVA, S. (Ed.): 3D Geoinformation Sciences.
Lecture Notes in Geoinformation and Cartography. Springer, Berlin / Heidelberg. 175-192.

[4] OBE, R.O. ; HSU, L. (2010): PostGIS in Action. Manning, New York.

[5] PLÜMER, L. ; GRÖGER, G. ; KOLBE, T.H. ; SCHMITTWILKEN, J. ; STROH, V. ; POTH, A. ; TADDEO, U. (2005):
3D Geodatenbank Berlin, Dokumentation V1.0. (in german language only). Institut für

 Kartographie und Geoinformation der Universität Bonn (IKG), lat/lon GmbH.
Accessible under:
www.businesslocationcenter.de/imperia/md/content/3d/dokumentation_3d_geo_db_berlin.pdf

[6] GRÖGER, G. ; KOLBE, T.H. ; CZERWINSKI, A. ; NAGEL, C. (2008): OpenGIS City Geography Markup
Language (CityGML) Encoding Standard. Version 1.0.0. OGC 08-007rl.
Accessible under: http://www.opengeospatial.org/standards/citygml

[7] GRÖGER, G. ; KOLBE, T.H. ; NAGEL, C. ; HÄFELE, K-H. (2012): OGC City Geography Markup Language
(CityGML) Encoding Standard. Version 2.0.0. OGC 12-019.
Accessible under: http://www.opengeospatial.org/standards/citygml

[8] KUNDE, F. (2012): CityGML in PostGIS – Port, usage and performance-analysis using the
example of the 3DCityDB of Berlin. Master Thesis. Not yet finished.

Links:

www1 http://www.gnu.org/licenses/
www2 http://opportunity.bv.tu-berlin.de/software/projects/3dcitydb-imp-exp
www3 http://www.3dcitydb.net
www4 http://postgis.refractions.net/docs/AddGeometryColumn.html
www5 http://postgis.refractions.net/documentation/manualsvn/using_postgis_dbmanagement.html#gist_indexes
www6 http://www.postgis.org/documentation/manual-svn/using_raster.xml.html
www7 http://www.kappasys.ch/cms/index.php?id=23
www8 http://pgfoundry.org/projects/temporal/
www9 http://www.postgresql.org/docs/9.1/interactive/plpgsql-porting.html
www10 http://www.java.com/de/download
www11 http://www.postgresql.org/docs/

22

http://www.3dcitydb.net/

Tutorial for 3D City Database v2.0.6-postgis and Importer/Exporter v1.4.0-postgis

Appendix:

List of tables and figures:

Table 1: Port-overview on supported key-features of both versions.................................5
Table 2: Differences in data types...8
Table 3: Function-grouping with prefixes..11
Table 4: Folder hierarchy of the 3DCityDB installation package.....................................13

Figure 1: Empty PostGIS 2.0-database in the pgAdminIII-tool.......................................12
Figure 2: 3DCityDB in the pgAdminIII-tool..17
Figure 3: Importer/Exporter successfully connected to the database...............................18

23

