Section III
CityGML in Detail – Part 1

Prof. Dr. Thomas H. Kolbe

Institute for Geodesy and Geoinformation Science
Berlin University of Technology
kolbe@igg.tu-berlin.de

May 2008
EduServ6 Course on CityGML
This is copyrighted material. It is not allowed to distribute copies or parts of these slides and the video clips without the written consent of the author.

Please note, that the presentation also contains third-party copyrighted material used with permission.
Overview

- Section I
 - Introduction: Urban Information Modelling
 - CityGML Overview and Status
 - OGC Geography Markup Language (GML)

- Section II
 - Further GML Concepts and Application Modelling

- Section III – CityGML Details, Part 1

- Section IV – CityGML Details, Part 2

- Section V
 - Extending CityGML
 - Application Examples

- Section VI
 - Relations to Other Standards
Multi-scale modelling: 5 levels of details

- LOD 0 – Regional model
 - 2.5D Digital Terrain Model
- LOD 1 – City / Site model
 - “block model“ w/o roof structures
- LOD 2 – City / Site model
 - textured, differenciated roof structures
- LOD 3 – City / Site model
 - detailed architecture model
- LOD 4 – Interior model
 - “walkable“ architecture models
Thematic Modelling in CityGML

- **CityModel**
- **CityObject**
- **ExternalReference**
 - informationSystem: anyURI
 - externalReference: ExternalObjectReferenceType

<<FeatureCollection>>

- _Transportation Objects
- _City Furniture
- CityObject Group
- _Water Bodies
- _Site

- _Vegetation

<<Feature>>

- Relief Feature
 - loD1GeometryProperty
 - loD2GeometryProperty
 - loD3GeometryProperty

Geometry
DTM for each Level of Detail can be composed of

- **TINs** (Triangulated Irregular Network), **Grids**, **3D Breaklines**, and **3D Mass Points**

- Each DTM component may be restricted to be valid in a specific region by providing a **validity extent polygon**

Validity extent polygon can have holes which allow nested DTMs!
T. H. Kolbe – Lectures on CityGML

Section III

Site Model

_CityObject

_Site

- Excavation
 - Wall
 - Bridge

- Tunnel

_Abstract Building
Coherent aggregation of spatial and semantical components

- (recursive) composition of **building parts**
- **thematic surfaces** (roof surface, wall surface, etc.) [from LOD2]
- **building installations** like dormers, stairs, balconies [from LOD2]
- **openings** like doors and windows [from LOD3]
- **rooms** and **furniture** [in LOD4]

Components contain relevant **thematic attributes**

- name, class, function, usage, construction and demolition date, roof type, address
- no. of storeys above / below ground, storey heights
Building Model in LoD1: UML Diagram

AbstractBuilding

+ function: BuildingFunction[0..*]
+ yearOfConstruction: integer[0..1]
+ roofType: RoofType[0..1]
+ measuredHeigth: LengthType[0..1]
+ ...

BuildinPart

0..1

Building

0..*

Address

+ zipCode: int
+ city: String
+ street: String
+ houseNumber: String

implemented in CityGML using the xNAL standard from OASIS
Building Model in LoD2

_AbstractBuilding

+ function: BuildingFunction[0..*]
+ yearOfConstruction: integer[0..1]
+ roofType: RoofType[0..1]
+ measuredHeigth: LengthType[0..1]

_CityObject

_BoundarySurface

Solid Geometry
- IoD1SolidProperty
- IoD2SolidProperty

Surface Geometry
- IoD2SurfaceProperty
- IoD2LineProperty
- IoD2TerrainIntersectionCurve

Line Geometry
- IoD2SurfaceProperty

Roof Wall Ground ClosureSurface
Section III

14 T. H. Kolbe – Lectures on CityGML

Building Features in LoD4

- Exterior Shell
- Roof
- Wall
- Ceiling
- Interior wall
- Interior wall
- Opening (Door)
- Opening (Window)
- Room
- Floor
- Ground
Can be used e.g. for escape route planning in disaster management or for mobile robotics.

Topology implies Accessibility Graph!

- Entrance door
- Passage (w/o door)
- Doorway (with door)
- "Back room"
- "Living room"
- "Hallway"
- Rooms

Example labels:
- "Hallway"
- "Back room"
- "Living room"
Example for CityGML file structure

```xml
<?xml version="1.0" encoding="UTF-8"?>
<CityModel xmlns="http://www.citygml.org/citygml/1/0/0" ...further namespaces omitted>
  <gml:name>Cologne</gml:name>
  <gml:boundedBy>
    <gml:Envelope
      <gml:pos> 5659800.0 2561800.0 15.9 </gml:pos>
      <gml:pos> 5662200.0 2564200.0 95.7 </gml:pos>
    </gml:Envelope>
  </gml:boundedBy>
</CityModel>
```

Combined horizontal and vertical CRS

Bounding volume of the whole city model

Example for CityGML file structure

```xml
<CityModel xmlns="http://www.citygml.org/citygml/1/0/0" ...further namespaces omitted>
  <gml:name>Cologne</gml:name>
  <gml:boundedBy>
    <gml:Envelope
      <gml:pos> 5659800.0 2561800.0 15.9 </gml:pos>
      <gml:pos> 5662200.0 2564200.0 95.7 </gml:pos>
    </gml:Envelope>
  </gml:boundedBy>
</CityModel>
```

Combined horizontal and vertical CRS

Bounding volume of the whole city model

Example for CityGML file structure

```xml
<CityModel xmlns="http://www.citygml.org/citygml/1/0/0" ...further namespaces omitted>
  <gml:name>Cologne</gml:name>
  <gml:boundedBy>
    <gml:Envelope
      <gml:pos> 5659800.0 2561800.0 15.9 </gml:pos>
      <gml:pos> 5662200.0 2564200.0 95.7 </gml:pos>
    </gml:Envelope>
  </gml:boundedBy>
</CityModel>
```

Combined horizontal and vertical CRS

Bounding volume of the whole city model
...<Building gml:id="Building0815">
 <gml:name>My nice building</gml:name>
 <externalReference>
 <informationSystem>http://www.adv-online.de</informationSystem>
 <externalObject>
 <uri>urn:adv:oid:DEHE123400007001</uri>
 </externalObject>
 </externalReference>
 <function>1012</function>
 <yearOfConstruction>1985</yearOfConstruction>
 <roofType>3100</roofType>
 <measuredHeight uom="m">8.0</measuredHeight>
 <lod2Solid>
 <!-- geometry (for Level of Detail 2) see next slide -->
 </lod2Solid>
</Building>
...

Please note that geometries are objects that can have IDs.
<Building gml:id="Building0815">
 <lod2Solid>
 <gml:Solid>
 <gml:exterior>
 <gml:CompositeSurface>
 <gml:surfaceMember>
 <!-- front surface as in previous slide -->
 </gml:surfaceMember>
 <gml:surfaceMember>
 <!-- side surface -->
 </gml:surfaceMember>
 <gml:surfaceMember>
 <!-- here come side, back, roof, and ground surfaces -->
 </gml:surfaceMember>
 </gml:CompositeSurface>
 </gml:exterior>
 </gml:Solid>
 </lod2Solid>
</Building>
3D-Modell: Stadt Coburg

Building

BuildingPart

BuildingInstallation (Dormer)

BuildingPart

Building surface (WallSurface)
Coherent Building Model in Level of Detail 3

3D-Modell: Dr. Benner, Forschungszentrum Karlsruhe
Coherent Building Model in Level of Detail 4
Transportation Objects

Section III

23 T. H. Kolbe – Lectures on CityGML

Transportation Objects

CityModel

CityObject

ExternalReference

LoD1
LoD2..4

gml: AbstractFeature
+ name[0..*]: String

_TransportationObject

TransportationComplex
+ function[0..*]

AuxillaryTrafficArea
+ function[0..*]
+ surfaceMaterial[0..1]

TrafficArea
+ function[0..*]
+ usage[0..*]
+ surfaceMaterial[0..1]

Track
Road
Railway
Square

gml:_Surface
LoDXGeometry, x in {1..4}
Example: Transportation Model in LoD2

- Road
- Traffic Area
- Auxiliary Traffic Areas

Section III

T. H. Kolbe – Lectures on CityGML