
3D City Database for CityGML

3D City Database Version 2.0.6-postgis

Importer/Exporter Version 1.4.0-postgis

Release Version

Port-Documentation: PL/SQL to PL/pgSQL

27 August 2012

Geoinformation Research Group
Department of Geography
University of Potsdam

Felix Kunde
Hartmut Asche

Institute for Geodesy and
Geoinformation Science

Technische Universität Berlin

Thomas H. Kolbe
Claus Nagel

Javier Herreruela
Gerhard König

(Page intentionally left blank)

Content:

 1 Introduction..4

 2 General differences..5
 2.1 Basics..5
 2.2 Procedures and functions...5
 2.3 Messages...6
 2.4 Dynamic SQL...7
 2.5 Cursors..7
 2.6 Recursive SQL..8
 2.7 Global Temporary Tables..9

 3 Explicit differences...10
 3.1 Packages and user-defined types..10
 3.2 Working with user-defined types...12
 3.3 Differences in system-tables...14
 3.4 Non-translated parts..17
 3.5 Additional functions...18

Port-Documentation for PL/pgSQL-scripts of the 3D City Database v2.0.6-postgis

1. Introduction
Welcome to the documentation about ported PL/SQL scripts for the PostGIS version of the 3D
City Database (abbreviated as 3DCityDB in the following). The 3DCityDB contains PL/SQL
stored procedures which are used by the Importer/Exporter tool. They help to reduce the
number of JDBC-connections by letting the database undertake a group of tasks. Fortunately
PostgreSQL’s procedural language of SQL PL/pgSQL comes close to the PL/SQL grammar which
facilitated the porting of scripts. This documentation will present some general translation
examples that appeared when porting the 3DCityDB to PostGIS (chapter 2). Parts that couldn’t
be translated directly will appear in the third chapter.

For the Oracle version the procedures and functions were grouped into packages. In Oracle
packages are used to structurize stored procedures and also to hide helper-functions that do
not fulfill a purpose by itself from a public user interface. Their architecture is very much
object-oriented (details in chapter 3). However, regarding PostgreSQL the package concept
only exists in the commercial Plus Advance Server by EnterpriseDB. Another alternative that is
suggested by the Postgres-documentation and which was implemented in the end, is the usage
of schemas. A schema is a separate namespace with own tables, views, sequences, functions
etc. The packages from the Oracle-release are represented in one PostgreSQL-schema called
geodb_pkg and not in several schemas for each package. But for a better overview the
functions were given name-prefixes:

 Tab. 1: Function-grouping in Oracle and PostgreSQL

former package name Prefix Source (PL_pgSQL/GEODB_PKG/)

geodb_delete_by_lineage del_by_lin_ DELETE/DELETE_BY_LINEAGE.sql

geodb_delete del_ DELETE/DELETE.sql

geodb_idx idx_ INDEX/IDX.sql

geodb_match match_ MATCHING/MATCH.sql

geodb_merge merge_ MATCHING/MERGE.sql

geodb_stat stat_ STATISTICS/STAT.sql

geodb_util util_ UTIL/UTIL.sql

For each example a small info-box will signalize its occurrence in the functional groups (gray if
not occurred or not needed to be translated).

4

Port-Documentation for PL/pgSQL-scripts of the 3D City Database v2.0.6-postgis

2. General differences

2.1 Basics

The block-structure of a function in PL/SQL and PL/pgSQL is very similar. Just look at the
example to spot the differences. In PL/pgSQL the function-body has to be quoted with ‘…‘ or
$$ … $$ or $BODY$ … $BODY$. In the function-specification of PL/pgSQL the RETURN-
definition is slightly different. RETURN datatype IS becomes RETURNS datatype AS.

del del_by_lin idx match merge stat util

2.2 Procedures and functions

Procedures do not have a return-value, functions do. PL/pgSQL only knows functions. But they
can still act like procedures by returning the empty void data type. They do not even need a
RETURN block in the function body. The keyword SETOF was used to receive a 0 row result-
set. For Oracle examples the CREATE keyword is missing because of the use of packages (see
next chapter).

del del_by_lin idx match merge stat util

If no parameters are assigned to a function PL/pgSQL still needs an empty block of brackets,
PL/SQL does not.

5

FUNCTION exp_func(params) RETURN datatype
IS
 –-Declaration
BEGIN
 --Body
END;
/

CREATE FUNCTION exp_func(params) RETURNS datatype AS
$$
DECLARE
 –-Declaration
BEGIN
 --Body
END;
$$
LANGUAGE plpgsql;

 PROCEDURE exp_proc(params) PROCEDURE exp_proc(params)

 CREATE FUNCTION exp_proc(params) RETURNS SETOF void AS CREATE FUNCTION exp_proc(params) RETURNS SETOF void AS

Port-Documentation for PL/pgSQL-scripts of the 3D City Database v2.0.6-postgis

del del_by_lin idx match merge stat util

Sometimes it is necessary to assign default values to function-parameters. This is done with
the DEFAULT keyword or its abbreviation “:=”. PL/pgSQL can not compile the short form when
it stands inside the function-specification.

del del_by_lin idx match merge stat util

The same applies to row-type variables (%ROWTYPE). It is not possible to pass a record data
type to the function specification. This case appeared in the delete package but could be
substituted by handing over just the ID value of a record type as it was mostly the only
parameter needed for the function.

del del_by_lin idx match merge stat util

If a function or procedure is calling another function PL/pgSQL needs the keyword PERFORM if
the result of the call is not assigned to a function-variable or a RETURN block.

del del_by_lin idx match merge stat util

6

 CREATE FUNCTION exp_func() RETURNS datatype AS CREATE FUNCTION exp_func() RETURNS datatype AS

 FUNCTION exp_func RETURN datatype FUNCTION exp_func RETURN datatype

 CREATE FUNCTION exp_func(param DEFAULT '0') RETURNS datatype AS CREATE FUNCTION exp_func(param DEFAULT '0') RETURNS datatype AS

 FUNCTION exp_func(param := '0') RETURN datatype FUNCTION exp_func(param := '0') RETURN datatype

BEGIN
 called_func(params);
END;

BEGIN
 PERFORM called_func(params);
END;

 CREATE OR REPLACE FUNCTION geodb_pkg.del_pre_delete_citymodel
(citymodel_rec_id NUMERIC) RETURNS SETOF void AS

 CREATE OR REPLACE FUNCTION geodb_pkg.del_pre_delete_citymodel
(citymodel_rec_id NUMERIC) RETURNS SETOF void AS

 PROCEDURE pre_delete_citymodel(citymodel_rec citymodel%ROWTYPE) PROCEDURE pre_delete_citymodel(citymodel_rec citymodel%ROWTYPE)

Port-Documentation for PL/pgSQL-scripts of the 3D City Database v2.0.6-postgis

2.3 Messages

For writing messages on the output-prompt the dbms_output package is used in Oracle. For
PL/pgSQL RAISE NOTICE is equivalent to this. It can use placeholders instead of connecting a
string.

del del_by_lin idx match merge stat util

2.4 Dynamic SQL

When using dynamic SQL queries are created and changed during runtime which is very useful
for database applications. These queries are executed as a string which the database can reuse
without parsing it again. It is possible to exchange variables in the statement. They are
substituted by placeholders and bind to the query with the USING keyword (bind variables).
The differences between PL/SQL and PL/pgSQL are marginal as seen in the following example.

del del_by_lin idx match merge stat util

2.5 Cursors

The handling of cursors could directly be ported to PL/pgSQL as they are only used in FOR-
loops. The declaration has to be changed.

del del_by_lin idx match merge stat util

7

 EXECUTE ‘SELECT column FROM table WHERE column=$1’
 INTO var USING bind_var;
 EXECUTE ‘SELECT column FROM table WHERE column=$1’
 INTO var USING bind_var;

 EXECUTE IMMEDIATE ‘SELECT column FROM table WHERE column=:1’
 INTO var USING bind_var;
 EXECUTE IMMEDIATE ‘SELECT column FROM table WHERE column=:1’
 INTO var USING bind_var;

 exp_cur CURSOR FOR SQL-Statement exp_cur CURSOR FOR SQL-Statement

 CURSOR exp_cur IS SQL-Statement CURSOR exp_cur IS SQL-Statement

 RAISE NOTICE 'message for id %: %', exp_id, SQLERRM; RAISE NOTICE 'message for id %: %', exp_id, SQLERRM;

 dbms_output.put_line('message for id' || exp_id || ': ' || SQLERRM); dbms_output.put_line('message for id' || exp_id || ': ' || SQLERRM);

Port-Documentation for PL/pgSQL-scripts of the 3D City Database v2.0.6-postgis

2.6 Recursive SQL

In a hierarchical model like the relational schema for CityGML the performance of queries can
greatly benefit from recursive SQL. It guarantees that the child elements are deleted first
before the corresponding parent object is removed. For the 3DCityDB this is used for deleting
rows of the tables texturparam and surface_geometry by id and parent_id values. Oracle
offers a specific clause that differs from the SQL-Standard which is implemented in
PostgreSQL.

del del_by_lin idx match merge stat util

8

FUNCTION exp_func(params) RETURN datatype
IS
 –-Declaration
BEGIN
 --Body
END;
/

EXECUTE IMMEDIATE 'DELETE FROM textureparam WHERE surface_geometry_id IN
(SELECT id FROM

(SELECT id FROM surface_geometry START WITH id=:1 CONNECT PRIOR BY
id=parent_id ORDER BY level DESC))' USING pid;

EXECUTE IMMEDIATE 'DELETE FROM surface_geometry WHERE id IN
(SELECT id FROM

(SELECT id FROM surface_geometry START WITH id=:1 CONNECT PRIOR BY
id=parent_id ORDER BY level DESC))' USING pid;

EXECUTE 'DELETE FROM textureparam WHERE surface_geometry_id IN
 (WITH RECURSIVE recursive_query(id, parent_id, level) AS

(SELECT id, parent_id, 1 AS level FROM surface_geometry WHERE id=$1
 UNION ALL

 SELECT sg.id, sg.parent_id, rq.level + 1 AS level FROM
 surface_geometry sg, recursive_query rq WHERE sg.parent_id = rq.id

)
 SELECT id FROM recursive_query ORDER BY level DESC)' USING pid;

EXECUTE 'DELETE FROM surface_geometry WHERE id IN
 (WITH RECURSIVE recursive_query(id, parent_id, level) AS
 (SELECT id, parent_id, 1 AS level FROM surface_geometry WHERE id=$1
 UNION ALL
 SELECT sg.id, sg.parent_id, rq.level + 1 AS level FROM

 surface_geometry sg, recursive_query rq WHERE sg.parent_id = rq.id
)
 SELECT id FROM recursive_query ORDER BY level DESC)' USING pid;

Port-Documentation for PL/pgSQL-scripts of the 3D City Database v2.0.6-postgis

2.7 Global Temporary Tables

Temporary tables are defined for the match- and merge-scripts and used by the
Matching/Merging-Plugin of the Importer/Exporter. As temporary tables only exist during a
session PostgreSQL would not find them if initially defined during the creation of the 3DCityDB.
That’s why their definition was put into the functions that are called first in the
Matching/Merging-process.

del del_by_lin idx match merge stat util

9

PROCEDURE collect_cand_building(
lod NUMBER,
lineage cityobject.lineage%TYPE)

IS
BEGIN
 -- truncate tmp table
 EXECUTE IMMEDTIATE 'TRUNCATE TABLE match_tmp_building';

 -- retrieve . . .

CREATE OR REPLACE FUNCTION geodb_pkg.match_collect_cand_building(
lod INTEGER,
lineage cityobject.lineage%TYPE)

RETURNS SETOF void AS
$$
BEGIN
 -- creates the temporary table match_tmp_building
 EXECUTE 'CREATE GLOBAL TEMPORARY TABLE match_tmp_building(
 id INTEGER,
 parent_id INTEGER,
 root_id INTEGER,
 geometry_id INTEGER
) ON COMMIT PRESERVE ROWS';

 -- retrieve

Port-Documentation for PL/pgSQL-scripts of the 3D City Database v2.0.6-postgis

3. Explicit differences

3.1 Packages and user-defined types

To understand the differences between the package-structure of the PL/SQL files and the
rather flat PL/pgSQL files please take a close look on the following example from the INDEX-
package, which also contains other features that are unknown to the PostgreSQL world.

del del_by_lin idx match merge stat util

10

–-create user-defined type
CREATE OR REPLACE TYPE INDEX_OBJ AS OBJECT (
 index_name VARCHAR2(100),
 table_name VARCHAR2(100),
 attribute_name VARCHAR2(100),
 type NUMBER(1),
 srid NUMBER,
 is_3d NUMBER(1, 0),

 --specification of member functions of user-defined type (constructors)
 STATIC FUNCTION construct_spatial_3d
 (index_name VARCHAR2, table_name VARCHAR2, attribute_name VARCHAR2,

srid NUMBER := 0) RETURN INDEX_OBJ,

 STATIC function construct_spatial_2d
 . . .
);
/

--bodies of member functions
CREATE OR REPLACE TYPE BODY INDEX_OBJ IS
 STATIC FUNCTION construct_spatial_3d(
 index_name VARCHAR2,

table_name VARCHAR2,
attribute_name VARCHAR2,
srid NUMBER := 0) RETURN INDEX_OBJ

 IS
 BEGIN

RETURN INDEX_OBJ(upper(index_name), upper(table_name),
upper(attribute_name), 1, srid, 1);

 END;

 STATIC FUNCTION construct_spatial_2d(
 . . .
END;
/

--CREATE PACKAGE
--create specification for package geodb_idx
CREATE OR REPLACE PACKAGE geodb_idx
AS
 --index_table is a nested table for INDEX_OBJ
 TYPE index_table IS TABLE OF INDEX_OBJ;
 FUNCTION index_status(idx INDEX_OBJ) RETURN VARCHAR2;
 FUNCTION . . .
END geodb_idx;
/

Port-Documentation for PL/pgSQL-scripts of the 3D City Database v2.0.6-postgis

11

--package body
CREATE OR REPLACE PACKAGE BODY geodb_idx
AS
 --package-variables which can be used by functions
 NORMAL CONSTANT NUMBER(1) := 0;
 SPATIAL CONSTANT NUMBER(1) := 1;

 INDICES CONSTANT index_table := index_table(
 INDEX_OBJ.construct_spatial_3d('CITYOBJECT_SPX', 'CITYOBJECT', 'ENVELOPE'),
 INDEX_OBJ.construct_spatial_3d('SURFACE_GEOM_SPX', 'SURFACE_GEOMETRY',

'GEOMETRY'),
 INDEX_OBJ.construct_normal('CITYOBJECT_INX', 'CITYOBJECT', 'GMLID,

GMLID_CODESPACE'),
 INDEX_OBJ.construct_normal('SURFACE_GEOMETRY_INX', 'SURFACE_GEOMETRY',

'GMLID, GMLID_CODESPACE'),
 INDEX_OBJ.construct_normal('APPEARANCE_INX', 'APPEARANCE', 'GMLID,

GMLID_CODESPACE'),
 INDEX_OBJ.construct_normal('SURFACE_DATA_INX', 'SURFACE_DATA', 'GMLID,

GMLID_CODESPACE')
);

 --function-bodies
 FUNCTION index_status(idx INDEX_OBJ) RETURN VARCHAR2

. . .
 END;
. . .
END geodb_idx;
/

–-create user-defined type
DROP TYPE IF EXISTS geodb_pkg.INDEX_OBJ CASCADE;
CREATE TYPE geodb_pkg.INDEX_OBJ AS (
 index_name VARCHAR(100),
 table_name VARCHAR(100),
 attribute_name VARCHAR(100),
 type NUMERIC(1),
 srid INTEGER,
 is_3d NUMERIC(1, 0)
);

--no member-functions in PostgreSQL
–-create constructor functions as normal functions
CREATE OR REPLACE FUNCTION geodb_pkg.idx_construct_spatial_3d(

index_name VARCHAR,
table_name VARCHAR,
attribute_name VARCHAR,
srid INTEGER DEFAULT 0) RETURNS geodb_pkg.INDEX_OBJ AS $$

DECLARE
 idx geodb_pkg.INDEX_OBJ;
BEGIN
 idx.index_name := index_name;
 idx.table_name := table_name;
 idx.attribute_name := attribute_name;
 idx.type := 1;
 idx.srid := srid;
 idx.is_3d := 1;

 RETURN idx;
END;
$$
LANGUAGE 'plpgsql' IMMUTABLE STRICT;

Port-Documentation for PL/pgSQL-scripts of the 3D City Database v2.0.6-postgis

3.2 Working with user-defined types

As seen in the previous example a constant INDICES was created. It is of the type
INDEX_TABLE which is a nested table filled with 6 INDEX_OBJs. This constant is used for
performing one command on all the 6 INDEX_OBJs in a FOR-loop. Their single attributes are
accessed via dot notation. For PL/pgSQL this loop was organized in another way as the
INDEX_OBJs were stored in a normal table. The FOR-loop is looping through a query result of
this table. The access on the attributes of INDEX_OBJ is also done with dot notation but needs
extra brackets. Note: The data type STRARRAY is a nested table of VARCHAR2 and also user-
defined. It was replaced by an array of PostgreSQL’s TEXT data type.

12

CREATE OR REPLACE FUNCTION geodb_pkg.idx_construct_spatial_2d(
. . .

--no nested tables in PostgreSQL
–-create normal table with a column for INDEX_OBJs
DROP TABLE IF EXISTS geodb_pkg.INDEX_TABLE;
CREATE TABLE geodb_pkg.INDEX_TABLE (

ID SERIAL NOT NULL,
idx_obj geodb_pkg.INDEX_OBJ

);

--fill index_table by using constructor functions
INSERT INTO geodb_pkg.index_table VALUES(

1, geodb_pkg.idx_construct_spatial_3d(
'cityobject_spx', 'cityobject', 'envelope'));

INSERT INTO geodb_pkg.index_table VALUES (
2, geodb_pkg.idx_construct_spatial_3d(

'surface_geom_spx', 'surface_geometry', 'geometry'));
INSERT INTO geodb_pkg.index_table VALUES (

3, geodb_pkg.idx_construct_normal('cityobject_inx',
'cityobject', 'gmlid, gmlid_codespace'));

INSERT INTO geodb_pkg.index_table VALUES (
4, geodb_pkg.idx_construct_normal('surface_geometry_inx',

'surface_geometry', 'gmlid, gmlid_codespace'));
INSERT INTO geodb_pkg.index_table VALUES (

5, geodb_pkg.idx_construct_normal('appearance_inx', 'appearance',
'gmlid, gmlid_codespace'));

INSERT INTO geodb_pkg.index_table VALUES (
6, geodb_pkg.idx_construct_normal('surface_data_inx', 'surface_data',

'gmlid, gmlid_codespace'));

--no packages in PostgreSQL and thus no global variables for functions
--create package functions as normal functions
CREATE OR REPLACE FUNCTION geodb_pkg.idx_index_status(

idx geodb_pkg.INDEX_OBJ) RETURNS VARCHAR AS $$
. . .
END;
$$
LANGUAGE plpgsql;
. . .

Port-Documentation for PL/pgSQL-scripts of the 3D City Database v2.0.6-postgis

del del_by_lin idx match merge stat util

In the UTIL-package the user-defined data type DB_INFO_OBJ and the according nested table
DB_INFO_TABLE were not ported. As they were only used by one function it was sufficient to
let this function return a table with columns for each attribute of the former DB_INFO_OBJ.
The code-example follows in the next sub-chapter.

13

CREATE OR REPLACE FUNCTION geodb_pkg.idx_create_indexes(type INTEGER)
RETURNS text[] AS
$$
DECLARE
 log text[] := '{}';
 sql_error_code VARCHAR(20);
 rec RECORD;
BEGIN
 FOR rec IN select * from geodb_pkg.index_table LOOP
 IF (rec.idx_obj).type = type THEN
 sql_error_code := geodb_pkg.idx_create_index(rec.idx_obj);
 log := array_append(log, geodb_pkg.idx_index_status(rec.idx_obj) ||

':' || (rec.idx_obj).index_name || ':' ||
(rec.idx_obj).table_name || ':' ||
(rec.idx_obj).attribute_name || ':' || sql_error_code);

 END IF;
 END LOOP;
 RETURN log;
 END;
$$
LANGUAGE plpgsql;

FUNCTION create_indexes(type SMALLINT) RETURN STRARRAY
IS
 log STRARRAY;
 sql_error_code VARCHAR2(20);
BEGIN
 log := STRARRAY();

 FOR i IN INDICES.FIRST .. INDICES.LAST LOOP
 IF INDICES(i).type = type THEN
 sql_error_code := create_index(INDICES(i),

 geodb_util.versioning_table(INDICES(i).table_name) = 'ON');
 log.extend;
 log(log.count) := index_status(INDICES(i)) || ':' ||

INDICES(i).index_name || ':' ||
INDICES(i).table_name || ':' || INDICES(i).attribute_name || ':' ||

sql_error_code;
 END IF;
 END LOOP;

 RETURN log;
END;

Port-Documentation for PL/pgSQL-scripts of the 3D City Database v2.0.6-postgis

3.3 Differences in system-tables

Some functions in the INDEX- and UTIL-package are querying system-tables of Oracle to
receive certain information. Usually this information can also be found in the PostgreSQL
system tables, but sometimes this works only indirectly as columns are called differently or
simply do not exist.

Table with coordinate reference systems

The PostGIS-pendant to Oracle’s SDO_COORD_REF_SYS table is the spatial_ref_sys table.
A first look on the number of columns reveals that the retrieval of some attributes can be a bit
complicated.

SDO_COORD_REF_SYS

srid
coord_ref_sys_name
coord_ref_sys_kind
coord_sys_id
datum_id
geog_crs_datum_id
source_geog_srid
projection_conv_id
cmpd_horiz_sri
cmpd_vert_srid
information_source
data_source
is_legacy
legacy_code
legacy_wktext
legacy_cs_bounds
is_valid
supports_sdo_geometry

spatial_ref_sys

srid
auth_name
auth_srid
srtext
proj4text

Fortunately all the information needed is covered by the text-value in the srtext column. The
relevant content is extracted with string functions which is a kind of ugly way though.
Hopefully this will change in future releases of PostGIS.

14

Port-Documentation for PL/pgSQL-scripts of the 3D City Database v2.0.6-postgis

del del_by_lin idx match merge stat util

Until now PostGIS does not offer 3D spatial reference systems by default. INSERT examples
for PostGIS can be found at spatialreference.org. As seen before there is no column which
detects the dimension of the reference system. There are also no separate views for reference
systems like in Oracle (SDO_CRS_GEOGRAPHIC3D, SDO_CRS_COMPOUND). The solution can
again be found inside the entries of the srtext column. Only 3D-SRIDs have got an “UP”-Axis.

15

CREATE OR REPLACE FUNCTION geodb_pkg.util_db_metadata() RETURNS TABLE(
srid INTEGER,
gml_srs_name VARCHAR(1000),
coord_ref_sys_name VARCHAR(2048),
coord_ref_sys_kind VARCHAR(2048)) AS

$$
BEGIN
 EXECUTE 'SELECT SRID, GML_SRS_NAME FROM DATABASE_SRS' INTO srid,

gml_srs_name;
 EXECUTE 'SELECT srtext, srtext FROM spatial_ref_sys WHERE SRID=' || srid || ''

INTO coord_ref_sys_name, coord_ref_sys_kind;
 coord_ref_sys_name := split_part(coord_ref_sys_name, '"', 2);
 coord_ref_sys_kind := split_part(coord_ref_sys_kind, '[', 1);
 RETURN NEXT;
END;
$$
LANGUAGE plpgsql;

FUNCTION db_metadata RETURN DB_INFO_TABLE
IS
 info_ret DB_INFO_TABLE;
 info_tmp DB_INFO_OBJ;
BEGIN
 info_ret := DB_INFO_TABLE();
 info_ret.extend;

 info_tmp := DB_INFO_OBJ(0, NULL, NULL, 0, NULL);

 execute immediate 'SELECT SRID, GML_SRS_NAME from DATABASE_SRS' into
info_tmp.srid, info_tmp.gml_srs_name;

 execute immediate 'SELECT COORD_REF_SYS_NAME, COORD_REF_SYS_KIND from
SDO_COORD_REF_SYS where SRID=:1' into info_tmp.coord_ref_sys_name,

info_tmp.coord_ref_sys_kind using info_tmp.srid;

 info_tmp.versioning := versioning_db;
 info_ret(info_ret.count) := info_tmp;
 return info_ret;
END;

 EXECUTE 'SELECT count(*) FROM spatial_ref_sys WHERE auth_srid=$1 AND
 srtext LIKE ''%UP]%''' INTO is_3d USING srid;
 EXECUTE 'SELECT count(*) FROM spatial_ref_sys WHERE auth_srid=$1 AND
 srtext LIKE ''%UP]%''' INTO is_3d USING srid;

Port-Documentation for PL/pgSQL-scripts of the 3D City Database v2.0.6-postgis

Index-Status

In Oracle the system table USER_INDEXES provides information on the status of an index. If
errors occurred while building the index the status will be ‘INVALID’ and if dropped the status
will also be ‘DROPPED’, which means that the metadata-entry for the dropped index still exists.
Spatial indexes are detected by the column domidx_opstatus. In PostgreSQL information on
indexes is a bit more branched. A status field can be found in the pg_index table called
indisvalid. Unfortunately pg_index doesn’t contain a column which specifies the indexed
column. Two joins are needed to be able to query by the column-name. If an index is dropped
it is also deleted from the system-tables. So the status ‘DROPPED’ will not appear in a result
set.

del del_by_lin idx match merge stat util

16

FUNCTION index_status(table_name VARCHAR2, column_name VARCHAR2)
RETURN VARCHAR2
IS
 internal_table_name VARCHAR2(100);
 index_type VARCHAR2(35);
 index_name VARCHAR2(35);
 status VARCHAR2(20);
BEGIN
 internal_table_name := table_name;

 IF geodb_util.versioning_table(table_name) = 'ON' THEN
 internal_table_name := table_name || '_LT';
 END IF;

 execute immediate 'SELECT UPPER(INDEX_TYPE), INDEX_NAME FROM

USER_INDEXES WHERE INDEX_NAME= (SELECT UPPER(INDEX_NAME) FROM
USER_IND_COLUMNS WHERE TABLE_NAME=UPPER(:1) and

COLUMN_NAME=UPPER(:2))'
 into index_type, index_name using internal_table_name, column_name;

 IF index_type = 'DOMAIN' THEN
 execute immediate 'SELECT UPPER(DOMIDX_OPSTATUS) FROM USER_INDEXES

WHERE INDEX_NAME=:1' into status using index_name;
 ELSE
 execute immediate 'SELECT UPPER(STATUS) FROM USER_INDEXES WHERE

INDEX_NAME=:1' into status using index_name;
 END IF;

 RETURN status;

 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RETURN 'DROPPED';
 WHEN others THEN
 RETURN 'INVALID';
END;

Port-Documentation for PL/pgSQL-scripts of the 3D City Database v2.0.6-postgis

3.4 Non-translated parts

All functions or part of functions that deal with history management were dropped from the
files. This affected the INDEX, UTIL and STAT package. Scripts for the PLANNING MANAGER
were dropped as well.

PL/SQL functions for supporting the management of raster data (formerly grouped in
MOSAIC.sql) were attempted to port but dropped in the end as their functionalities only fit to
the tables of the Oracle version of the 3DCityDB e.g. RDT and IMP tables.

In the UTIL package the to_2d function is substituted by the PostGIS function ST_Force_2D.

17

CREATE OR REPLACE FUNCTION geodb_pkg.idx_index_status(
 table_name VARCHAR,
 column_name VARCHAR)
RETURNS VARCHAR AS $$
DECLARE
 is_valid BOOLEAN;
 status VARCHAR(20);
BEGIN
 EXECUTE 'SELECT DISTINCT pgi.indisvalid FROM pg_index pgi
 JOIN pg_stat_user_indexes pgsui ON pgsui.relid=pgi.indrelid
 JOIN pg_attribute pga ON pga.attrelid=pgi.indexrelid
 WHERE pgsui.relname=$1 AND pga.attname=$2' INTO is_valid USING

lower(table_name), lower(column_name);

 IF is_valid is null THEN
 status := 'DROPPED';
 ELSIF is_valid = true THEN
 status := 'VALID';
 ELSE
 status := 'INVALID';
 END IF;

 RETURN status;
EXCEPTION
 WHEN OTHERS THEN
 RETURN 'FAILED';
END;
$$
LANGUAGE plpgsql;

Port-Documentation for PL/pgSQL-scripts of the 3D City Database v2.0.6-postgis

3.5 Additional functions

During the development of the port some helper-functions were programmed for test cases.
Some of them are now part of the release. They are not mandatory for the Importer/Exporter
but might be helpful when working with the 3DCityDB.

• geodb_pkg.util_change_db_srid
◦ defines a new reference system for the 3DCityDB
◦ drops indexes and spatial columns and creates new ones
◦ should only be executed on an empty database

• geodb_pkg.util_on_delete_action
◦ helper-function for geodb_pkg.util_update_constraints
◦ drops a foreign key constraint and adds it again but with a different setting for

delete-cases e.g. ON DELETE CASCADE
◦ with ON DELETE CASCADE the deletion of a value will also delete values from

referential columns

• geodb_pkg.util_update_constraints
◦ default behavior: uses the function geodb_pkg.util_on_delete_action for

updating all foreign keys of the 3DCityDB to ON DELETE CASCADE. If any other
char parameter is passed to the function the foreign keys are set to RESTRICT,
which is the default for the 3DCityDB

18

